期刊文献+

生物沸石滤池去除微污染水源水中氨氮的挂膜启动 被引量:8

Start-up of biological zeolite filter for removing ammonia nitrogen from contaminated source water
在线阅读 下载PDF
导出
摘要 对沸石滤料生物滤池处理微污染水源水中低浓度氨氮的挂膜启动性能进行了研究。试验结果表明,挂膜过程可以根据氨氮、亚硝酸盐氮、硝酸盐氮浓度的变化分为三个阶段:初期沸石发挥本身对铵离子的吸附交换性能,氨氮去除率达88%以上;中期开始出现生物硝化作用,亚硝酸盐积累明显,硝酸盐出水浓度不稳定,氨氮去除率稳定,但下降至65%左右;后期硝化反应稳定进行,亚硝酸盐迅速转化为硝酸盐,氨氮去除率稳定在60%以上。生物沸石滤池挂膜同时应考察亚硝酸盐氮、硝酸盐氮浓度变化,在出水亚硝酸氮明显积累后又稳定降低,且硝酸盐氮稳定积累时方可认为挂膜成功。进出水pH值的变化可以指示硝化反应的进行程度和生物膜形成阶段。 A biological zeolite filter was used to remove ammonia nitrogen with a low concentration from contaminated source water, and the process of start-up was carried out. The results showed the whole start-up period could be divided into three different parts, according to the variation of ammonia nitrogen, nitrite nitrogen and nitrate nitrogen. During the early stages, ion exchange was the major contributor to removal of ammonia nitrogen, and the removal rate was over 88%. Then the accumulation of nitrite nitrogen became apparent, the concentration of nitrate nitrogen fluctuated, the removal rate of ammonia nitrogen was about 65%. The nitrification reaction played the main role in the end, and nitrite nitrogen transformed to nitrate nitrogen rapidly. The removal rate of ammonia nitrogen kept above 60%. When nitrite nitrogen became reducing after a short period of accumulation as well as nitrate nitrogen steadily increasing, the start-up process of biological zeolite filter was finished. The pH in inflow and outflow water could be an indicator for nitrification reaction and the biofilm formation.
作者 胥红 邓慧萍
出处 《供水技术》 2009年第5期10-13,共4页 Water Technology
基金 建设部水体污染控制与治理科技重大专项(2008ZX07425-007)
关键词 生物沸石 氨氮 亚硝酸盐氮 硝酸盐氮 挂膜 biological zeolite process ammonia nitrogen nitrite nitrogen nitrate nitrogen start-up
  • 相关文献

参考文献5

二级参考文献39

  • 1贾新军,李亚峰,班福忱,王文光.电厂生产废水的处理与回用[J].工业用水与废水,2006,37(2):87-88. 被引量:2
  • 2Falkentoft C M, Harrenoes P, Mosbak H. Combined denitrification and phosphorus removal in a biofilter [J]. Wat. Sci. Tech,2000,41 (4) :493 - 501.
  • 3Fdz - polanco F, Mendez E, Lmenaeral M A. Spatial distribution of heterotrophs and nitrifiers in a submerged biofilter for nitrification[J]. Wat. Re.s, 2000, 34(10) :4801 - 4809.
  • 4Wijeyekoon S,Mino T,Satoh H. Fixed bed biological aerated filtration for secondary effluent polishing- effect of filtration rate on nitrifying biological activity distribution[J ]. Wat Sci Tech, 2000, 41 ( 1 ) : 187 - 195.
  • 5Ian Qing,Ji Hua. Advanced treatment of waster and slightly deteriorated raw water by biological activated carbon method under oxygen condition[J]. Journal of China Textile University, 2000,17 (1) : 61 - 63.
  • 6Ruiz G, Jeison D, Chnmy R. Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration [J ]. Water, 2003, 12(3) : 1371 - 1377.
  • 7陈洪斌.受污染源水的生物接触氧化预处理研究[D].上海:同济大学环境科学与工程学院,2002.
  • 8Wang Y F,Lin F, Pang W Q. Ammonium exchange in aqueous solution using Chinese natural elinoptilolite and modified zeolite [ J ]. J Hazard Mater,2007,142 ( 1 - 2) : 160 - 164.
  • 9Hankins N P, Pliankarom S, Hilal N. Removal of NH4^+ ion from NH4Cl solution using clinoptilolite: a dynamic study using a continuous packed-bed column in up-flow mode[J]. Sep Sci Technol,2004,39(6):1347 -1364.
  • 10Weatherley L R, Miladinovic N D. Comparison of the ion exchange uptake of ammonium ion onto New Zealand elinoptilolite and mordenite[J]. Water Res,2004,38(20) : 4305 - 4312.

共引文献160

同被引文献94

引证文献8

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部