期刊文献+

基于改进粒子群算法的PID控制器参数优化 被引量:10

Optimization of PID Controller Paramerters Based on Improved Particle Swarm Algorithms
在线阅读 下载PDF
导出
摘要 粒子群优化算法是一种性能优越的寻优算法,但由于早熟问题,影响了算法性能的发挥,同时PID控制器是一类广泛使用的控制器,其参数的选取可等效为优化问题,在标准微粒子群算法的基础上,分析了惯性权重对不同粒子的影响,提出了一种基于适应度值的多惯性权重动态调整机制,同时针对标准微粒子群算法易陷入局部最优的特点,引入混沌扰动机制,利用混沌的遍历性、随机性来改善种群的多样性,并将该方法用于PID控制器参数整定,仿真结果表明了方法的有效性和优越性。 Particle Swarm Optimizer is a probability algorithm with excellent performance. But the premature phenomenon limits the effect of PSO. PID controller is a widely used controller,its performance depends on the optimization of PID controller paramerters. Based on the standard PSO algorithm,the influence of inertial weight on different particles is analyzed, and a Multi -weight dynamic adjusting mechanism based on fitness value is proposed. In view the disadvantage that the standard PSO algorithms would easily be trapped in local optimum,the paper introduces the chaos perturbation mechanism to improve the swarm variety by using randomicity and ergodicity,and this improved PSO is utilized to optimize PID controller paramerters. Simulation results show that this method is effective and execllent.
作者 罗豪 雷友诚
出处 《计算机仿真》 CSCD 北大核心 2009年第9期156-159,共4页 Computer Simulation
关键词 微粒子算法 多惯性权重动态调整 混沌扰动 比例积分微分控制器 Particle swarm optimization algorithm Multi - weight dynamic adjusting Chaos perturbation PID controller
  • 相关文献

参考文献7

  • 1J Kennedy and R C Eberhart. Particle swarm optimization [C]. Proc: IEEE Intl. Conf. on Neural Networks, Ⅳ, 1942 - 1948. Piscataway, NJ: IEEE Service Center. 1995.
  • 2高尚,杨静宇.群智能算法及应用[M].北京:中国水利水电出版社,2006.
  • 3Y Shi and R C Eberhart. A modified particle swarm optimizer[ C ], IEEE Intemationnal Conference of Evolutionary Computation. Anchorage, Alaska : IEEE Press 1998 - 5.
  • 4高尚,杨静宇.混沌粒子群优化算法研究[J].模式识别与人工智能,2006,19(2):266-270. 被引量:78
  • 5郑力新,周凯汀,王永初.PID进化设计法[J].仪器仪表学报,2001,22(4):340-343. 被引量:33
  • 6陶永华.新型PID控制及应用[M].北京:机械工业出版社,1998..
  • 7郝万君,强文义,胡林献,肖刚.基于改进粒子群算法的PID参数优化与仿真[J].控制工程,2006,13(5):429-432. 被引量:24

二级参考文献32

  • 1闻朝中,李智.粒子群算法在配电网络无功补偿优化中的应用[J].武汉工业学院学报,2004,23(1):18-21. 被引量:39
  • 2李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 3杨若黎,顾基发.一种高效的模拟退火全局优化算法[J].系统工程理论与实践,1997,17(5):29-35. 被引量:103
  • 4Eberhart R C. Kennedy J. A New Optimizer Using Particles Swarm Theory. In:Proc of the 6th International Symposium on Micro Machine and Human Science. Nagoya, Japan, 1995, 30-43
  • 5Shi Y H, Eberhart R C. A Modified Particle Swarm Optimizer.In: Proc of the IEEE International Conference on Evolutionary Computation, Anchorage, USA, 1998, 69-73
  • 6Gorez R.A survey of PID auto-tuning methods[J].Journal A,1997,38(1):3-10.
  • 7刘益剑,张建明,王树青.基于PSO算法的PID控制器参数优化设计[C].杭州:第五届全球智能控制与自动化大会,2004.
  • 8Kennedy J,Eberhart R C.Particle swarm optimization[A].Proc IEEE Int Conf Neural Networks[C].Piscataway:IEEE Press,1995.
  • 9Eberhart R C,Shi Y.Particle swarm optimization:developments applications and resources[A].In Proc Congr Evolutionary Computation[C].Piscataway NJ:IEEE Press,2001.
  • 10Parsopoulos K E,V rahatis M N.Recent approaches to global optimization problems through particle swarm optimization[J].Natural Computing,2002,23(1):235-306.

共引文献169

同被引文献116

引证文献10

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部