期刊文献+

数据挖掘中分类并行算法研究

Research of parallel algorithms for classification in data mining
在线阅读 下载PDF
导出
摘要 数据挖掘在各行业发挥着越来越重要的作用,随着数据挖掘中数据量的高速增长以及大规模计算在数据挖掘中的应用,挖掘算法处理海量数据的能力问题日益突出.通过对常见的数据挖掘分类并行算法进行研究探讨,分析了C4.5算法,SLIQ算法,SPRINT算法的优缺点,最后指出研究并行算法是解决处理海量数据能力的有效途径. Data Mining plays an important role in industry and business. The ability of data mining algorithms to deal with mass-data becomes more important with the increase in data. Parallel technology is an effective way to resolve this problem. This paper studies some common parallel algorithms for classification in data mining.
作者 刘俊霞
出处 《河南科技学院学报》 2009年第3期63-65,共3页 Journal of Henan Institute of Science and Technology(Natural Science Edition)
关键词 数据挖掘 分类 并行 Data mining classification parallelism
  • 相关文献

参考文献7

  • 1范明,孟小峰.译数据挖掘概念与技术[M].北京:机械工业出版社,2001.
  • 2陈国良.并行算法-结构-编程(第二版)[M].北京:高等教育出版社,2003.
  • 3Kubota K, Nakase A, Sakai H. etal, Parallelization of Decision Tree Algorithm and its Performance Evaluation[J].EEE, 2000, (2): 575-577.
  • 4Jin R, Yang G, Agrawal G. Shared Memory Parallelization of Data Mining Algorithms: Techniques, Programming Interface, and Performance[J]. IEEE Transaction on Knowledge and Data Mining, 2005, 17 (1): 72-73.
  • 5Mehta M, Agrawal R, Rissanen J. SLIQ: A Fast Scalable Classifier for Data Mining. In Proc.1996 Int [M]. Conf. Extending Database Technology (EDBT' 96), Avigon, France, 1996.
  • 6Shafer J, Agrawal R, Mehta M. SPRINT: A Scalable Parallel Classifier for Data Mining. Research Report[M]. IBM Almaden Research Center, San Jose. California, 1996.
  • 7Bader, D.A.; Madduri, Parallel Algorithms for Evaluating Centrality Indices in Real-world Networks [M].Intemational Conference on Aug. 2006. 539-550 .

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部