期刊文献+

一种采用变异算子的自适应微粒群算法 被引量:1

Adaptive Particle Swarm Optimization with Mutation
在线阅读 下载PDF
导出
摘要 为了提高微粒群算法优化高维目标的性能,采用了个体惯性权重自适应调整的微粒群算法,其中每个微粒拥有属于个体的惯性权重。通过对每个微粒的适应值进行评价对惯性权重动态和自适应,以加快其收敛速度并逃离局部最优。为了增强搜索性能,基于高斯变异和随机变异的变异算子被引入。该方法以及其他3种不同微粒群优化算法对4个经典函数在100、200和400维数下进行仿真的结果比较证明此算法在解决高维数目标时具有良好性能。 To enhance the performance of the particle swarm optimization (PSO), the self-adaptive individual inertia weight adjustment particle swarm optimization was employed. In the approach each particle has an individual inertia weight in the approach. The individual inertia weight will be adjusted dynamically and self-adaptively by evaluating the fitness value of the passed evolutions to speed up convergence and escape local optima. Moreover, a mutation operator was employed based on the Gaussian mutation and the random mutation. This algorithm was applied to the four classical test functions of 100,200 and 400 dimension and simulation shows that a marked improvement in performance over the traditional PSO.
作者 李剑
出处 《计算机与数字工程》 2009年第7期13-16,共4页 Computer & Digital Engineering
关键词 微粒群算法 全局优化 变异算子 particle swarm optimization, global optimization, mutation operator
  • 相关文献

参考文献7

  • 1J Kennedy, R Eberhart. Particle Swarm optimization [C]. Proceedings of IEEE International Conference on Neural Networks. Piscataway, NJ: IEEE Press, 1995: 1944-1948.
  • 2Y Shi, R C Eberhart. Parameter Selection in Particle Swarm Optimization[C]. Lecture Notes in Computer Science, Evolutionary Programming, V, W, Porto, N, Saravanan, D, Waagen. , A, E, Eiben. Eds. Berlin, Germany: Springer-Verlag, 1998, 7:591-600.
  • 3Andrews P S. An Investigation into Mutation Operators for Particle Swarm Optimization[C]. Proceedings of CEC2006, Piscataway, NJ: IEEE Press, 2006: 1044- 1051.
  • 4Ratnaweera A, Halgamuge S K, and Watson H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients [J]. IEEE Trans on Evolutionary Computation, 2004, 8(3) : 240-255.
  • 5李剑,王乘.一种改进的自适应微粒群优化算法[J].华中科技大学学报(自然科学版),2008,36(3):118-121. 被引量:11
  • 6H Higashi, H Iba. Particle swarm optimization with Gaussian mutation [C]. Proceedings of the IEEE swarm intelligence Symphosim. Piseataway, NJ: IEEE Press, 2003:72-79.
  • 7Angel E. Mu - noz Zavala, Arturo Hem' andez Aguirre, and Enrique R. Villa Diharce. Constrained Optimization via Particle Evolutionary Swarm Optimization Algorithm (PESO) [C]. Proceedings of GECKO'05. Piscataway, NJ: IEEE Press, 2005. 25-29.

二级参考文献8

  • 1Kennedy J, Eberhart R C. Particle swarm optimization[C] // Proceedings of IEEE International Conference on Neural Networks. Piscataway: IEEE, 1995:1942-1948.
  • 2Shi Y H, Eberhart R C. Empirical study of particle swarm optimization[C] // Proceedings of IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 1999: 1945-1950.
  • 3Shi Y, Eberhart R. Fuzzy adaptive particle swarm optimization[C] // Proceedings of Congress on Evolutionary Computation. Piscataway: IEEE, 2001: 79- 85.
  • 4Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization[C] //Proceedings of 1999 Congress Evolutionary Computation. Piscataway: IEEE, 1999: 1951-1957.
  • 5Ratnaweera A, Halgamuge S K,Watson H C. Selforganizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J]. IEEE Trans on Evolutionary Computation, 2004, 8(3):240-255.
  • 6Stacey A, Jancic M, Grundy I. Particle swarm optimization with mutation[C] // Proceeding of the 2003 Congress on Evolutionary Computation (CEC' 03). Canbella: IEEE, 2003:1425-1430.
  • 7Suganthan P N. Particle swarm optimizer with neighborhood operator[C] // Proceedings of the Congress on Evolutionary Computation. Piscataway: IEEE, 1999:1958-1962.
  • 8Takahama T, Sakai S. Solving constrained optimization problems by the ε constrained particle swarm optimizer with adaptive velocity limit control[C] // Proceedings of IEEE Congress on Evolution Computation. Piscataway: IEEE, 2006:308-315.

共引文献10

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部