期刊文献+

基于动态帧的视频关键帧提取算法研究 被引量:6

Research on Video Key Frame Extraction Algorithm Based on Dynamic Frame
在线阅读 下载PDF
导出
摘要 针对基于内容的视频检索系统,提出了一种关键帧提取算法.为了提高算法的保真度和压缩比,首先构造了动态帧,它的每个像素对应一个像素代表灰度集合,该集合中的元素可以最大限度地代表镜头中相应像素的灰度值,然后根据镜头中每一帧与该镜头动态帧之间的距离来确定关键帧.为了验证本算法的有效性,选取了大量视频与TMOF算法及SKF算法进行比较.结果表明:该算法具有较高的准确性和可靠性,保真度和压缩比均高于其他两种算法. A key frame extraction algorithm was presented according to content-based video retrieval system. At first,a dynamic frame was constructed to improve the fidelity and compression ratio of the algorithm. Each pixel in dynamic frame corresponds to a representative gray set,which means the elements in the set represent the furthest corresponding pixel gray value in the shot. Then the distance between each frame and the dynamic frame was calculated to determine the key frames. The algorithm was tested on comprehensive videos,and compared with both TMOF algorithm and SKF algorithm. Experiments show that the key frame extraction algorithm is more accurate and reliable,and the fidelity and compression ratio are higher than that of the other two algorithms.
作者 李玉峰
出处 《天津科技大学学报》 CAS 2009年第4期69-72,共4页 Journal of Tianjin University of Science & Technology
基金 天津科技大学科学研究基金资助项目(20080204)
关键词 视频检索 镜头 关键帧提取 动态帧 video retrieval shot key frame extraction dynamic frame
  • 相关文献

参考文献11

  • 1Hammound R,Mohr R. A probabilistic framework of selecting effective key frames from video browsing and indexing [C] //Proceedings of International Workshop on Real-Time Image Sequence Analysis. Oulu,Finland: IEEE Computer Society, 2000 : 79-88.
  • 2Kin W S,Kin M L,Guoping Q. A new key frame representation for video segment retrieval[J]. IEEE Trans on Circuits and Systems for Video Technology, 2005, 15(9) :1148-1155.
  • 3Zhuang Y ,Rui Y ,Huang T S. Adaptive key frame extraction using unsupervised clustering [C] // Proceedings of International Conference on Image Processing. Washington D C ,USA:IEEE Computer Society, 1998:866-870.
  • 4Ferman A M,Tekalp A M. Two-stage hierarchical video summary extraction to match low-level user browsing preferences [J]. IEEE Trans on Multimedia,2003,5 (2) : 244-256.
  • 5王方石,须德,吴伟鑫.基于自适应阈值的自动提取关键帧的聚类算法[J].计算机研究与发展,2005,42(10):1752-1757. 被引量:34
  • 6张婵,高新波,姬红兵.视频关键帧提取的可能性C-模式聚类算法[J].计算机辅助设计与图形学学报,2005,17(9):2040-2045. 被引量:21
  • 7陈卓夷.基于非参数密度估计聚类的关键帧提取方法[J].计算机科学,2007,34(4):119-120. 被引量:8
  • 8Wolf W. Key flame selection by motion analysis [C]// Proceedings of IEEE International Conference on Acoustic,Speech and signal processing. Washington D C,USA: IEEE Computer Society, 1996:1228-1231.
  • 9朱映映,周洞汝.一种从压缩视频流中提取关键帧的方法[J].计算机工程与应用,2003,39(18):13-14. 被引量:23
  • 10Sun Z H,Fu P,Xiao J,Meng D. A feature distance based algorithm for video segmentation[C]// Proceedings of the 7th lASTED International Conference on Computer Graphics and Imaging. Kauai Hawaii,USA: ACTA Press, 2004:406-410.

二级参考文献28

  • 1W Wolf.Key frame selection by motion analysis[C].In:Proc IEEE Int Conf Acoust,Speech,and Signal Proc,1996.
  • 2H Zhang,J Wu.D Zhong et al.An integrated system for contentbased video retrieval and browsing[J].Pattern Recognition,1997:30(4):643~658.
  • 3P O Gresle,T S Huang.Gisting of Video documents:A key frames selection algorithm using relative activity measure[C].In:The 2nd Int Conf On Visual Information Systems,1997.
  • 4Y T Zhuang,Y Rui,T S Huang et al.Adaptive key frame extraction using unsupervised clustering[C].In:Proc Of IEEE Int Conf On Image Processing,1998.
  • 5A M Ferman.A M Tekalp.Muhiscale content extraction and representation for video indexing[C].In:Multimedia Storage and Archival Systems,(Dallas,TX),1997-11.
  • 6Irena Koprinska,Sergio Carrato.Temporal video segmentation :a survey [J].signal processing:Image Communication,2001 ; 16(3) :477-500.
  • 7Zhang HongJiang, Wang J Y A, Altunbasak Y. Content based video retrieval and compression: A united solution[A]. In: IEEE International Conference on Image Processing, Washington, DC, 1997. 13~16.
  • 8Liu Tianming, Zhang Hongjiang, Qi Feihu. A novel video key frame extraction algorithm based on perceived motion energy model[J]. IEEE transactions on circuits and systems for video technology, 2003, 13(10): 1006~1013.
  • 9Hanjalic A, Zhang Hongjiang. An integrated scheme for automated video abstraction based on unsupervised cluster validity analysis[J]. IEEE Transactions on Circuits and Systems for Video Technology, 1999, 9(8): 1280~1289.
  • 10Bezdek J C. Pattern recognition with fuzzy objective function algorithms[M].New york: Norwell, 1981.

共引文献73

同被引文献22

  • 1陈旭东.J2ME应用教程[M].北京:北京交通大学出版社,2008.
  • 2Dasgupta A, Nakamura Y.Making feasible walking motion of humanoid robots from human motion capture da- ta[c].Proceedings of IEEE International Conference on Robotics and Automation ,Detroit, MI, 1999, 2: 1044- 1049.
  • 3Delaney B.On the trail of the shadow woman: the mystery of motion capture [J]. IEEE Computer Graphics and Applications, 1998, 18(5):14-19.
  • 4Pullen K,Bregler C.Motion capture assisted animation :texturing and syntbesis[C].The 29th annual conference, San Anto- nio,2002:501-508.
  • 5Lee J, Chai JX, Reitsma PSA, Hodgins JK, Pollard NS. Interac- tive control of avatars animated with human motion data[C]. ACM Trans. on Graphics, 2002, 21(3): 491-500.
  • 6Chai J X, Hodgins J K. Performance animation from low-dimensional control signals [J]. ACM Transactions on Graphics, 2005.24(3): 686-696.
  • 7Ran L, Shakhnarovich G, Hodgins J, et al.Learning silhouette features for control of human motion data [J].ACM Transactions on Graphics. 2005,24(4): 1303- 1331.
  • 8Hirose M ,Ogawa K. Honda humanoid robots development[J]. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences,2007, 365(1850):11-19.
  • 9Nakaoka s, Nakazawa A. Task model of lower body motion lbr a biped humanoid robot to imitate human dances[C]//Proc of 2005 IEEE/RSJ Interna- tional Conference on Intelligent Robots and Systems. Edmonton: IEEE, 2005:3157-3162.
  • 10刘桂英,周琴.基于J2ME平台的手机实时监控的实现方法[J].工矿自动化,2008,34(1):67-69. 被引量:3

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部