期刊文献+

基于预测的WMSNs目标跟踪协作处理方法 被引量:4

Forcasting Based Cooperative Processing Method for Target Tracking in WMSNs
在线阅读 下载PDF
导出
摘要 提出一种基于预测的无线多媒体传感器网络(WMSNs)目标跟踪协作处理方法。建立全向感知模型,由图像准确定位目标空间坐标位置。组织传感器节点休眠,基于自回归移动平均模型(ARMA)和径向基函数网络(RBFN)进行目标运动轨迹预测,唤醒节点完成协作处理。使用形状上下文的匹配(Shape Matching)算法,避免多节点冗余信息传输。仿真结果表明,基于ARMA-RBFN预测的唤醒机制使能耗降低25倍以上,Shape Matching可减少传输数据量20%。 A forcasting based cooperative processing method for target tracking in Wireless Multimedia Sensor Networks is proposed. Through establishing sensor model, target localization is performed by image sensor nodes. Combining autoregressive moving average(ARMA)model and radial basis function networks (RBFNs) to perform motive target position forecasting during target tracking, based on which, cooperative wake-up and decision is realized among multi-nodes. By Shape Matching, redundant image data transmission is avoided. The simulation results have shown that wake-up mechanism based on ARMA-RBFN improves the performance of energy consumption by 25 times. Data transmission scale is reduced by 20 % after using Shape Matching.
出处 《传感技术学报》 CAS CSCD 北大核心 2009年第8期1175-1181,共7页 Chinese Journal of Sensors and Actuators
基金 浙江省科技计划项目资助(2005CS31001)
关键词 无线多媒体传感器网络 目标跟踪 运动轨迹预测 协作处理 wireless multimedia sensor networks target tracking motive position forecasting cooperative processing
  • 相关文献

参考文献16

  • 1Chang C K and Huang J. Video Surveillance for Hazardous Conditions Using Sensor Networks [C]//Proc. of the 2004 IEEE Int'l Conf. on Networking, Sensing & Control. New York, 2004,1008-1013.
  • 2Ian F. Akyildiz, Tommaso Melodia, Kaushik R. Chowdhury, A Survey on Wireless Multimedia Sensor Networks[J], Computer Networks 2007,51,921-960.
  • 3罗武胜,鲁琴,杜列波.基于LBT的无线传感器网络多节点协同图像压缩算法[J].传感技术学报,2008,21(9):1600-1604. 被引量:6
  • 4Shin, J. ;Chin, M. Optimal Transmission Range for Topology Management in Wireless Sensornetworks[C]//In Information Networking,Advances in Data Communications and Wireless Networks,Proceedings of the International Conference on Information Networking(ICOIN) 2006, Sendai, apan, Jan 16-19, 2006 ;Chong, I. , Kawahara, K, Eds. , 177-185.
  • 5Rao, S. K. Modified Gain Extended Kalman Filter with Application to Bearings-Only Passive Manoeuvring Target Tracking [J].IEE Proceeding-Radar, Sonar and Navigation 2005, 152, 239-244.
  • 6Wang, X. ; Wang, S. ; Ma, J. An Improved Particle Filter for Target Tracking in Sensor System [J]. Sensors 2007, 7, 144-156.
  • 7Liu,W. ;Farooq, M. An ARMA Model Based Scheme for Maneuvering Target Tracking[J]. Proceedings of Midwest Symposium on Circuits and Systems 1994, Hiroshima, Japan, Jul 25-28,2004,1408-1411.
  • 8Lee, M. J. ; Choi Y. K. An Adaptive Neurocontroller Using RBFN for Robot Manipulators[J]. IEEE Transactions on Industrial Electronics 2004,51,711-717.
  • 9S. Belongie, J. Malik, and J. Puzicha, Shape Matching and Object Recognition Using Shape Contexts[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24 (4): 509-522.
  • 10马颂德,张正友.计算机视觉--计算理论与算法基础[M],2003.

二级参考文献19

  • 1鲁琴,罗武胜,张勇.多媒体传感器网络中基于两跳簇结构的图像传输方案[J].传感技术学报,2007,20(11):2476-2480. 被引量:11
  • 2SCHWENKER F,KESTLER H A,PALM G,et al.Three learning phase for radial basis funciton networks[J].Neural Networks,2001,14(4-5):439-458.
  • 3SARIMVEIS H,DOGANIS P,ALEXANDRIDIS A,et al.A classification technique based on radial basis function neural networks[J].Advances in Engineering Software,2006,37(4):218-221.
  • 4KARAYIANNI N.Reformulated radial basis neural networks trained by gradient descent[J].Neural Networks,1999,3(5):657-671.
  • 5PIOVOSO M,PHILLIP A,LAPLANTE L,et al.Kalman filter recipes for real-time image processing[J].Real-Time Imaging,2003,9(6):433-439.
  • 6SIMON D.Kalman filtering for fuzzy discrete time dynamic systems[J].Applied Soft Computing Journal,2003,3(3):191-207.
  • 7BOJE E,PETRICK M.Application of the extended Kalman filter to a lysine hydrochlorination process[J].Control Engineering Practice,2000,8(3):291-297.
  • 8JULIER S,HLMANN J.A new approach for filtering nonlinear systems[C].Piscataway,NJ,USA:IEEE Press,1995:1628-1632.
  • 9LI Peihua,ZHANG Tianwen,MA Bo.Unscented kalman filter for visual curve tracking[J].Image and Vision Computing,2004,22(2):157-164.
  • 10SIMON D.Training radial basis neural networks with the extended kalman filter[J].Neurocomputing,2002,48(1-4):455-475.

共引文献10

同被引文献64

  • 1孙斌.合成孔径雷达图像重建的断层投影技术[J].电子测量与仪器学报,2004,18(3):85-88. 被引量:1
  • 2李捷,刘先省,韩志杰.基于ARMA的无线传感器网络流量预测模型的研究[J].电子与信息学报,2007,29(5):1224-1227. 被引量:31
  • 3李燕君,王智,孙优贤.无线传感器网络的链路分析与建模[J].传感技术学报,2007,20(8):1846-1851. 被引量:23
  • 4Ian F. Akyildiz, Tommaso Melodia, Kaushik R. Chowdhury. A Survey on Wireless Muhimedia Sensor Networks [ J ]. Comput. Networks (Elsevier) ,2007,51 (4) :921 - 960.
  • 5Rui Dai, Ian F. Akyildiz. A spatial correlation model for visual information in wireless muhimedia sensor networks, IEEE Transactions on Multimedia, October 2009,11 (6) : 1148 - 1159.
  • 6Ahmad,J. J. , Khan, H. A. , Khayam, S. A. Energy efficient video compression for wireless sensor networks, in 43rd Annual Conference on Information Sciences and Systems,2009. CISS 2009. 629 - 634.
  • 7Stanislava Soro, Wendi B. Heinzelman. On the coverage problem in video - based wireless sensor networks, in: Proc. of the IEEE Intl. Conf. on Broadband Communications, Networks, and Systems ( BroadNets), Boston, MA, USA, October 2005,2:932 - 939.
  • 8H. Ma and Y. Liu, Correlation based video processing in video sensor networks,in IEEE Int. Conf. Wireless Networks, Communications and Mobile Computing,Jun. 2005,2,987 - 992.
  • 9R. Wagner, R. Nowak, and R. Baraniuk, Distributed image compression for sensor networks using correspondence analysis and super resolution, in Proe. IEEE Int. Conf. Image Processing, vol. 1,2003,597 - 600.
  • 10M. Wu and C. W. Chen, Collaborative image coding and transmission over wireless sensor networks, EURASIP Journal Advance Signal Processing,2007.223 - 223.

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部