期刊文献+

面向个性化推荐的强关联规则挖掘 被引量:45

Strongest association rules mining for personalized recommendation
原文传递
导出
摘要 提出了适用于个性化推荐的强关联规则的概念,并给出一种基于矩阵的强关联规则挖掘算法强关联规则集合能够以较少数量的规则表示全部有效关联信息,便于管理和应用.给出的强关联规则挖掘算法只需对交易数据库进行一次扫描,在挖掘过程中不断删除非频繁项使矩阵规模逐渐减小,并且避免了对冗余规则的挖掘,从而提高了挖掘效率.通过对三组数据的实验表明:强关联规则集合包括的规则数量平均仅为规则总数的26.2%,有效解决了规则数量过多的问题. The notion of strongest association rules (SAR) was proposed, a matrix-based algorithm was developed for mining SAR set. As the subset of the whole association rule set, SAR set includes much less rules with the special suitable form for personalized recommendation without information loss. With the SAR set mining algorithm~ the transaction database is only scanned for once, the matrix scale becomes smaller and smaller, so that the mining efficiency is improved. Experiments with three data sets show that the number of rules in SAR set in average is only 26.2% of the total number of whole association rules, which mitigates the explosion of association rules.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2009年第8期144-152,共9页 Systems Engineering-Theory & Practice
基金 河北省自然科学基金(F2008000117) 中国博士后基金(20060400705) 河北省科技攻关项目(07213508D)
关键词 数据挖掘 关联规则 个性化推荐 强关联规则 data mining association rules personalized recommendation strongest association rules
  • 相关文献

参考文献27

  • 1李杰,徐勇,王云峰,王友.最简关联规则及其挖掘算法[J].计算机工程,2007,33(13):46-48. 被引量:10
  • 2Li J, Wang Y F, Xu Y. Personalized recommendation based on strong association rule mining for mass customization[C]// 3rd Interdisciplinary of World Congress of Mass Customization and Personalization, Hong Kong, 2005.
  • 3Li J, Xu Y, Wang Y F, et al. Strongest association rules mining for efficient applications[C]//Proceeding of the Fourth IEEE Conference on Service Systems and Service Management, 2007, 502-507.
  • 4丁振国,陈静.基于关联规则的个性化推荐系统[J].计算机集成制造系统-CIMS,2003,9(10):891-893. 被引量:25
  • 5余力,刘鲁.电子商务个性化推荐研究[J].计算机集成制造系统,2004,10(10):1306-1313. 被引量:105
  • 6曾春,邢春晓,周立柱.个性化服务技术综述[J].软件学报,2002,13(10):1952-1961. 被引量:396
  • 7Bayardo R J, Agrawal R, Gunopulos D. Constraint-based rule mining in large, dense databases[C]//Proceedings of the 15th International Conference on Data Engineering, 1999: 188-197.
  • 8Chen G, Wei Q, Liu D, et al. Simple association rules (SAR) and the SAR-based rule discovery[J]. Computers and Industrial Engineering, 2002, 43(4): 721-733.
  • 9Li J, Shen H, Topor R. Mining the optimal class association rule set[J]. Knowledge-Based Systems, 2002, 15: 399-405.
  • 10Fu X, Budzik J, Hammond K. Mining navigation history for recommendation[C]//Proceedings of the 2000 International Conference on Intelligent User Interfaces, New York, USA: ACM Press, 2000. 106-112.

二级参考文献162

共引文献612

同被引文献456

引证文献45

二级引证文献368

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部