期刊文献+

基于视觉注意力模型的FCM法在医学诊断中的应用 被引量:1

FCM Method Based on Human Visual Attention Model for Computer-aided Diagnosis
在线阅读 下载PDF
导出
摘要 基于人类视觉注意模型得到局部视觉显著图,然后以注意焦点初始化聚类中心进行模糊C均值聚类,从而实现图像ROI的提取。实验证明基于图像视觉注意力模型的FCM方法应用于计算机辅助诊断中可以提高医学诊断的有效性和快速性。 A computer-aided detect and diagnosis method based on a human visual attention model, and then use the FOA to initialize the cluster center and fuzzy clustering to complete image ROI extracting are present. The experiment results show the proposed method is effective and valid.
作者 廖璠 孙季丰
出处 《科学技术与工程》 2009年第16期4671-4673,4682,共4页 Science Technology and Engineering
基金 广东省自然科学基金(06300098)资助
关键词 计算机辅助诊断 特征提取 视觉注意模型 模糊聚类 visual attention feature extracting CT image computer-aided diagnosis FCM
  • 相关文献

参考文献4

二级参考文献29

  • 1Itti Laurent, Koch Christof, Niebur Ernst. A model of saliency-based visual attention for rapid scene analysis [J]. IEEE Transactions on PAMI, 1998, 20(11): 1254-1259.
  • 2Itti Laurent, Koch Christof. A comparison of feature combination strategies for saliency-based visual attention [A]. Proc SPIE[C]. 1999,3644. 473-482.
  • 3Itti Laurent. Visual attention and target detection in cluttered natural scenes [J]. Optical Engineering, 2001, 40(9): 1784-1793.
  • 4Blaser Erik, Sperling George, Lu Zhonglin. Measuring the amplification of attention[A]. Proceedings of the National Academy of Sciences of the United States of America[C]. 1999, 96. 11681-11686.
  • 5Tsotsos J K, Culhane S M, Wai W Y K, et al. Modelling visual attention via selecting tuning [J]. Artificial Intelligence, 1995, 78(1-2): 507-545.
  • 6Niebur E, Koch C. Computational architecture for attention. Parasuraman R. The Attention Brain [M]. MA: MIT Press, 1998. 163-186.
  • 7Olshausen B A, Anderson C H, Van Essen D C. A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information[J]. The Journal of Neuroscience, 1993, 13(11): 4700-4719.
  • 8Koch C, Ullman S. Shifts in selective visual attention: towards the underlying neural circuitry[J]. Human Neurobiology, 1985, 4: 219-227.
  • 9Milanese R, Gil S, Pun T. Attentive mechanisms for dynamic and static scene analysis[J]. Optical Engineering, 1995, 34(8): 2428-2434.
  • 10Baluja S, Pomerleau D A. Expectation-based selective attention for visual monitoring and control of a robot vehicle [J]. Robotics and Autonomous Systems, 1997, 22(3-4): 329-344.

共引文献62

同被引文献29

  • 1张丽梅,乔立山,陈松灿.基于张量模式的特征提取及分类器设计综述[J].山东大学学报(工学版),2009,39(1):6-14. 被引量:5
  • 2李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:116
  • 3付海艳,张诚一.基于FCM和粗糙集属性重要度理论的综合评价系统[J].计算机应用,2006,26(6):1479-1481. 被引量:12
  • 4李洁,孙吉贵.现在聚类算法研究[M].北京:高等教育出版社,2006.
  • 5ErarClUe H Ruspini. A new approach to clustering[ J ]. Information mad Control, 1969, 15(1) :22 -32.
  • 6Bezdek J C. Cluster Validity with fuzzy sets [ J ]. Jourrml of Cyber- netics,1974, 13:58 -73.
  • 7Cannon It, Dave J, Berxtek J C. Eflqeient implementation of the fuzz- y e-mamas clustering algorithm [ J ]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1986,8:248 -255.
  • 8Jerome Cutrona, Noel Bonnet, Michel Harbin, et al. Advances in the segmentation of multi-component mieromaalytieal in'mges[ J]. Ultra- microscopy. 2005,103 : 141 - 152.
  • 9Daniel Graves, Witold Pedrycz. Kernel-based fuzzyclustering and fuzzy clustering: Aeomparative experimental study [ J ]. Fuzzy Sets and Systems ,2010,161:522 - 545.
  • 10Li Liang-qun ,Ji Hong-bing,Gao Xin-bo. Maximumen tropy fuzzy clustering with application to real-time target tracking[ J]. Signal Processing, 2006,86:3432 - 3447.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部