期刊文献+

非完整映射理论与刚体定点转动的几何描述 被引量:8

Nonholonomic mapping theory and geometric formulation for rotation of a rigid body with one fixed point
原文传递
导出
摘要 利用非完整映射方法,从一个已知Riemann空间构造一个嵌入其中的Riemann-Cartan空间.作为特例,研究从Euclidean空间构造Weitzenbock空间的方法.基于dAlembert-Lagrange原理和非完整映射,将一个Riemann空间的测地线对应于另一个Riemann-Cartan空间的自平行线.把这种非完整映射理论应用到刚体定点转动问题上,得到了刚体运动的欧拉方程是欧拉角描述的Riemann位形空间的测地线方程,而在刚体角速度对应的准坐标空间上是常挠率Riemann-Cartan空间的自平行线方程的结论. The method of nonholonomic mapping is adopted to construct a Riemann-Cartan space embedded in a known Riemann space. As a special case, Weitzenbock space is embedded in an Euclidean space. By means of the nonholonomic mapping and d' Alembert-Lagrange principle a geodesic in a Riemann space is mapped to an autoparallel in a Riemann-Cartan space. The mapping theory is applied to the problem of rotation of a rigid body with a fixed point. It is proved that Euler equations for the rigid body are equations of geodesic in the Riemann configuration space described by Euler angles, whereas the equations in the pseudo-coordinate space corresponding to angular velocities of the rigid body are equations of autoparallel in the Riemann-Cartan space with constant torsion.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2009年第8期5142-5149,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:10872084和10472040) 辽宁省优秀青年科研人才培养基金(批准号:3040005) 辽宁省高校科研基金(批准号:2008S098) 辽宁省高等学校优秀人才支持计划(批准号:2008RC20) 辽宁省重点实验室建设计划(批准号:2008403009)资助的课题~~
关键词 欧拉角 非完整映射 Riemann-Cartan空间 自平行线 Euler angles, nonholonomic mapping, Riemann-Cartan space, autoparallel
  • 相关文献

参考文献23

  • 1Neimark J,Fufaev N 1972 Dynamics of Nonholonomic Systems (Providence:American Mathematical Society).
  • 2Mei F X 2000 Appl.Mech.Rev.53 283.
  • 3郭永新,赵喆,刘世兴,王勇,朱娜,韩晓静.非完整系统Chetaev动力学和vakonomic动力学的等价条件[J].物理学报,2006,55(8):3838-3844. 被引量:11
  • 4Bloch A M,Baillieul J,Crouch P,Marsden J 2003 Nonholonomic Mechanics and Control (London:Springer).
  • 5郭永新,罗绍凯,梅凤翔.非完整约束系统几何动力学研究进展:Lagrange理论及其它[J].力学进展,2004,34(4):477-492. 被引量:28
  • 6Guo Y X,Liu S X,Liu C,Luo S K,Wang Y 2007 J.Math.Phys.48 082901.
  • 7Guo Y X,Luo S K,Shang M,Mei F X 2001 Rep.Math.Phys.47 313.
  • 8Guo Y X,Liu C,Liu S X,Chang P 2009 Sci.China.E 52 761.
  • 9Bloch A M,Krishnaprasad P S,Marsden J E,Murray R 1996 Arch.Rational Mech.Anal.136 21.
  • 10Iglesias-Ponte D,de Leon M,de Diego D M 2008 J.Phys.A 41 015205.

二级参考文献25

共引文献40

同被引文献52

  • 1GUO YongXin,LIU Chang,LIU ShiXing,CHANG Peng.Decomposition of almost Poisson structure of non-self-adjoint dynamical systems[J].Science China(Technological Sciences),2009,52(3):761-770. 被引量:5
  • 2GUO YongXin1,LIU Chang2,WANG Yong3,LIU ShiXing1 & CHANG Peng2 1 College of Physics,Liaoning University,Shenyang 110036,China,2 School of Aerospace Engineering,Beijing Institute of Technology,Beijing 110081,China,3 School of Basic Medical Science,Guangdong Medical College,Dongguan 523808,China.Nonholonomic mapping theory of autoparallel motions in Riemann-Cartan space[J].Science China(Physics,Mechanics & Astronomy),2010,53(9):1707-1715. 被引量:6
  • 3郭永新,罗绍凯,梅凤翔.非完整约束系统几何动力学研究进展:Lagrange理论及其它[J].力学进展,2004,34(4):477-492. 被引量:28
  • 4王勇,郭永新.Riemann-Cartan空间中的d’Alembert-Lagrange原理[J].物理学报,2005,54(12):5517-5520. 被引量:12
  • 5H. Kleinert,A. Pelster.Letter: Autoparallels From a New Action Principle[J]. General Relativity and Gravitation . 1999 (9)
  • 6Hehl F W,McCrea J D,Mielke E W.Metric-affine gauge theory of gravity:Field equations,Noether identities,world spinors,and breaking of dilation invariance. Physics Reports . 1995
  • 7Trautman A.Einstein-Cartan theory. . 2008
  • 8Bilby B A,Bullough R,Smith E.Continuous distributions of dislocations:A new application of methods of non-Riemannian geometry. Proceedings of the Royal Society Series A Mathematical Physical and Engineering Sciences . 1955
  • 9Sciama D W.On the analogy between charge and spin in general relativity. Recent Developments in General Relativity . 1962
  • 10Cacciatori S L,Caldarelli M M,Giacomini A,et al.Chern-Simons formulation of three-dimensional gravity with torsion and nonmetricity. Journal of Applied Geophysics . 2006

引证文献8

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部