期刊文献+

一种基于GPU加速的细粒度并行蚁群算法 被引量:9

A parallel ant colony optimization algorithm based on fine-grained model with GPU-accelerated
原文传递
导出
摘要 为改善蚁群算法对大规模旅行商问题的求解性能,提出一种基于图形处理器(GPU)加速的细粒度并行蚁群算法.将并行蚁群算法求解过程转化为统一计算设备架构的线程块并行执行过程,使得蚁群算法在GPU中加速执行.实验结果表明,该算法能提高全局搜索能力,增大细粒度并行蚁群算法的蚂蚁规模,从而提高了算法的运算速度. An algorithm of fine-grained parallel ant colony optimization algorithm (ACO) based on graphics process unit(GPU) accelerated is proposed to improve the performance of ACO for application to large-scale TSP problems. The process of parallel ACO is convert into that of parallel compute unified device architecture (CUDA) thread blocks, which makes PACO speed up. The experimental results show that the algorithm improves the ability of global search, increases the ant population in the PACO, speeds up its running and provides ordinary user with a feasible PACO solution.
出处 《控制与决策》 EI CSCD 北大核心 2009年第8期1132-1136,共5页 Control and Decision
基金 国家自然科学基金项目(70571009 70671014) 国家杰出青年基金项目(70725004) 高等学校博士点基金项目(20060141013) 辽宁省高等学校优秀人才支持计划项目([2006]124)
关键词 蚁群算法 并行处理 图形处理器 细粒度 Ant colony optimization algorithm Parallel process Graphics process unit Fine-grained
  • 相关文献

参考文献12

  • 1Colorni A,Dorigo M,Maniezzo V,et al.Distributed optimization by ant colonies[C].Proc of 1st European Conf on Artificial Life.Paris,1991:134-142.
  • 2Marcus Randall,Andrew Lewis.A parallel implementation of ant colony optimization[J].J of Parallel and Distributed Computing,2002,62(9):1421-1432.
  • 3于滨,程春田,杨忠振,谢景新.一种改进的粗粒度并行蚁群算法[J].系统工程与电子技术,2006,28(4):626-629. 被引量:6
  • 4萧蕴诗,李炳宇,吴启迪.求解TSP问题的模式学习并行蚁群算法[J].控制与决策,2004,19(8):885-888. 被引量:20
  • 5Jowens J D,Luebke D,Govindaraju N.A survey of general purpose computation on graphics hardware[C].Euro-Graphics 2005.Dublin,2005:21-51.
  • 6李建明,迟忠先,万单领.一种基于GPU加速细粒度并行遗传算法的实现方法[J].控制与决策,2008,23(6):697-700. 被引量:15
  • 7Hong Li,Allison M.Parallel simulation for a fish schooling model on a general-purpose graphics processing unit[j].Concurrency and Computation:Practice and Experience,2009,21(6):725-735.
  • 8Stutzle T,Hoos H.Max-Min ant system and local search for the traveling salesman problem[C].Proc of IEEE Int Conf on Evolutionary Computation.Indianapolis:IEEE Press,1997:309-314.
  • 9Thomas Stuzle,Holger H Hoos.Max-Min ant system[J].Future Generation Computer Systems,2000,16(8):889-914.
  • 10Marco Dorigo,Eric Bonabeau.Ant algorithms and stigmergy[J].Future Generation Computer Systems,2000,16(8):851-871.

二级参考文献38

  • 1吴恩华.图形处理器用于通用计算的技术、现状及其挑战[J].软件学报,2004,15(10):1493-1504. 被引量:141
  • 2刘立芳,霍红卫,王宝树.PHGA-COFFEE:多序列比对问题的并行混合遗传算法求解[J].计算机学报,2006,29(5):727-733. 被引量:11
  • 3Dorigo M, Maniezzo V, Colorni A. The ant system: Optimization by a colony of cooperating agents[J]. IEEE Trans on Systems, Man and Cybernetics - Part B,1996,26(1):29-41.
  • 4Dorigo M, Gambardella L. Ant colony system: A cooperative learning approach to the traveling salesman problem[J]. IEEE Trans on Evolutionary Computation,1997,1(1):53-66.
  • 5Bullnheimer B, Kotsis G, Strauss C. Parallelization strategies for the ant system[R]. Vienna: University of Vienna,1997.
  • 6Thomas Stützle, Holger Hoos. MAX-MIN ant system and local search for the traveling salesman problem[A]. Proc IEEE Int Conf on Evolutionary Computation (ICEC′97)[C]. Indianapolis,1997.309-314.
  • 7康立山 谢云 尤失勇.非数值并行算法(一)[M].北京:科学出版社,1998..
  • 8Dorigo M,Maniezzo V,Colorni A.The ant system:optimization by a colony of cooperating agents[J].IEEE Trans.on Systems,Man and Cybernetics,1996,1 (26):29-41.
  • 9Stützle T,Hoos H.Max-min ant system and local search for combinatorial optimization problems[M].S Vo B,Martello S,I Osman H,et al (Eds.) Meta-heuristics:advances and trends in local search paradigms for Optimization.Kluwer Academic,Boston,MA,1999:313-329.
  • 10Lee S G,Jung T U,Chung T C.An effective dynamic weighted rule for ant colony system optimization[C]//Proc.of the 2001 Congress on Evolutionary Computation.IEEE Press,2001.

共引文献305

同被引文献182

引证文献9

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部