期刊文献+

基于预分类学习的超分辨率复原算法 被引量:4

Pre-classified Learning Based Image Super-resolution Algorithm
在线阅读 下载PDF
导出
摘要 基于学习的超分辨率复原算法是目前图像复原领域最具有潜力的方法之一。针对现有算法遍历搜索样本库,运算复杂度高且存在误匹配现象等问题,本文提出了一种新的基于预分类学习的超分辨率复原算法。算法根据简单的纹理特征对样本库进行预分类,分成若干子样本库,然后在子样本库中进行像素级精确匹配搜索。预分类过程的引入,既有效降低了精确匹配的复杂度,又因有效利用了样本的纹理特征,提高了子样本库内容的相关性,减少了误匹配。实验表明,本文提出的算法能有效提高算法结果的复原质量和运行速度。 Learning-based image super-resolution is one of the most promising approaches to solve the image super-resolution problem. A novel pre-classified learning based image superresolution algorithm is proposed to reduce the complexity of full searching and to avoid mismatching. A texture-based pre-classified process is used to select a subset of samples. Then, the best-matching samples are searched among the selected subsets. In the proposed algorithm, the complexity of the searching process is effectively reduced by the texture-based preclassified process. Furthermore, using the texture features, the mismatching probability is reduced. Experimental results show that both the visual quality and the run-time are improved.
出处 《数据采集与处理》 CSCD 北大核心 2009年第4期514-518,共5页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(60431020 60772069)资助项目 北京市自然科学基金(4062006)资助项目
关键词 纹理特征 学习 样本库 超分辨率 texture features learning training set super-resolution
  • 相关文献

参考文献5

二级参考文献117

共引文献94

同被引文献28

  • 1Barreto D, Alvarez L D, Molina R. Region-based su- per-resolution for compression[J]. Multidimensional Systems and Signal Processing, 2007, 18 (2) .. 59-81.
  • 2Yang Shuyuan, Wang Min, Chen Yiguang, et al. Single-image super-resolution reconstruction via learned geometric dictionaries and clustered sparse coding [J]. IEEE Transactions on Image Processing, 2012, 9(21) ..4016-4028.
  • 3Toshie M, Yasutaka M, Shunsuke I. Reconstructive video coding system[C]// The 1st IEEE global con- ference on consumer electronics. Tokyo:Consumer E- lectronics Press, 2012,553-555.
  • 4Jeffrey G, Calvin C, Michael F. Hybrid video com- pression using selective keyframe identiffcation and patch-based super-resolution[C]//IEEE Internation- al Symposium on Multimedia. Dana Point CA.. IEEE Computer Society Press,2011,105 ; 111.
  • 5Zhiming P, Hongkai X. Sparse spatio-temporal repre- sentation with adaptive regularized dictionaries for super-resolution based video coding[C]// Data Com- pression Conference. Snowbird:IEEE Computer Soci- ety Press,2012,139 : 149.
  • 6Zeng H, Houqiang L, Weiping L. An adaptive down- sampling based video coding with hybrid super-reso- lution methodiC] ff Circuits and Systems. Seoul: IEEE Circuits and Systems Press, 2012,504 : 508.
  • 7Minmin S, Ping X, Ci W. Down-sampling based vid- eo coding using super-resolution technique [J]. IEEE Transactions on Circuits and Systems for VideoTechnology,2011, 6(21):755-766.
  • 8Hasan F. Decoder-side super-resolution and frame in- terpolation for improved H. 264 video coding[C]// Data Compression Conference. Snowbird: IEEE Data Compression Press, 2013,83 : 93.
  • 9Zhong Guoyun, Qing Linbo, Wu Di,et al. An adap- tive horizontal and vertical transform skip scheme for H. 264/AVC[J]. Optical Engineering, 2012,51 ( 9 ) : 097402-1- 097402-11.
  • 10Yang Jianchao, John Wright, Thomas Huang,et al. Image super-resolution via sparse representation[J]. IEEE Trans on Image Processing, 2010, 19 (11) 2861-2973.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部