摘要
本文将结构动力学问题转到状态空间中去研究并以三次Hermite插值多项式逼近状态变量,应用时间不连续的Galerkin方法推导出了一个单步递推算法公式,从对该算法公式的有限差分分析可知它是无条件强稳定、有效高精度并且有好的耗散、漂移和超调特性.给出了与Newmak的梯形法则、HHT-α及对状态变量的三次拉格朗日插值多项式逼近方法的分析和数值比较.
In the paper, a structural dynamic problem is treated in a state space with the application of Hermitian cubic interpolation functions for state variables. The step-by-step algorithm is presented by applying time discontinuous Galerkin method. The unconditional stability, high-order accuracy and good dissipation, dispersion and overshoot property are observed from a finite difference analysis of the algorithm formulation. The numerical analysis and the results of the new algorithm are compared with that of Newmak's trapezoidal rule, HHT-α and algorithm of applying cubic Lagrange interpolation function for state variables.
出处
《振动与冲击》
EI
CSCD
1998年第2期25-29,共5页
Journal of Vibration and Shock
基金
国家自然科学基金
机械部发展基金的资助
关键词
GALERKIN法
结构动力学
动力响应
time discontinuous galerkin method, unconditional stability, dissipation, overshoot