期刊文献+

基于EMD和Elman网络的人民币汇率时间序列预测 被引量:12

Research on the Forecasting of RMB Exchange Rate Time Series Based on EMD and Elman Network
在线阅读 下载PDF
导出
摘要 为了改进神经网络的预测性能,更精确地预测人民币汇率,提出一种新的汇率时间序列预测方法,即利用基于经验模态分解(EMD)的Elman网络进行预测.首先对人民币兑美元的汇率序列做了非线性检验和非平稳性检验,然后对该序列进行经验模态分解,将得到的固有模态函数作为神经网络的输入变量,并在确定神经网络的关键参数后进行预测.实证结果表明,利用基于EMD的Elman网络进行人民币汇率预测能够取得更好的效果. In order to improve the forecasting performance of neural networks and to forecast the RMB exchange rate more accurately, a new method for exchange rate time series forecasting was proposed. That is empirical mode decomposition (EMD) based Elman neural network ensemble learning paradigm. First, a non-linear and non-stationary test was done to time series of RMB exchange rate against the U.S. dollar. Then, we decomposed the series into several Intrinsic Mode Functions by EMD, which were the input variables of the neutral network, determined the key parameters and did the forecasting. The empirical results have shown that the method proposed is more accurate and effective.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第6期89-92,共4页 Journal of Hunan University:Natural Sciences
基金 国家社会科学基金重点资助项目(07AJL005) 高等学校博士学科点专项科研基金资助项目(20070532091) 全国高等学校青年教师奖励基金资助项目(教人司2002[123])
关键词 时间序列 汇率预测 经验模态分解 ELMAN网络 time series analysis exchange rate forecasting empirical mode decomposition (EMD) Elman neutral network
  • 相关文献

参考文献11

  • 1HSIEH D A. The statistical properties of daily foreign exchange rates: 1974 - 1983 [J ]. Journal of International Economies, 1988,24(1/2) : 129 - 145.
  • 2曾鸣,刘宝华,徐志勇,袁德.基于混沌模糊神经网络方法的短期负荷预测[J].湖南大学学报(自然科学版),2008,35(1):58-61. 被引量:16
  • 3LIN C H, CHOU W D. Adaptive hybrid control using a recurrent neural network for a linear synchronous motor servo drive system [J]. IEEE Proc Control Theory Apply, 2001, 148 (2): 156- 168.
  • 4丛爽,高雪鹏.几种递归神经网络及其在系统辨识中的应用[J].系统工程与电子技术,2003,25(2):194-197. 被引量:34
  • 5CHUI C K. Approximation theory and functional analysis[M]. Boston: Academic Press, 1991.
  • 6HUANG N E, SHEN Z. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Royal Society of London Proceedings Series A, 1998 (454) :903 - 995.
  • 7李楠,曾兴雯.基于EMD和神经网络的时间序列预测[J].西安邮电学院学报,2007,12(1):51-54. 被引量:12
  • 8ZHANG X, LAI K K, WANG S Y. Foreeastlng crude oil price with an EMD-based neural network ensemble learning paradigm [J]. Energy Economies,2008,30:2623-2635.
  • 9BAILY D. THOMPSON D. How to developing neural network applications[J]. AI Expert, 1990,5(6) :38 - 47.
  • 10KATZ J O. Developing neural network forecasters for trading[J]. Technical Analysis of Stocks and Commodities, 1992,10(4):58 - 70.

二级参考文献19

共引文献57

同被引文献106

引证文献12

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部