期刊文献+

赋权树状网络中r-控制集问题和k-中心问题 被引量:2

r-Dominating Set Problem and k-Center Problem in Weighted Trees
在线阅读 下载PDF
导出
摘要 图G=(V,E;f,w)是顶点和边都赋权的树,f:V→R^+,w:E→R^+.本文给出了顶点u与v之间距离的一种新的定义.在顶点和边都赋权的树中,研究在新距离条件下的r-控制集问题与k-中心问题.对于r-控制集问题,设计出了复杂性为■(n)的多项式时间算法;对于k-中心问题,设计出了■(n^2 log n)的多项式时间算法. Let G = (V, E; f, w) be a weighted tree of order n, where f : V→R^+, w : E → R^+. In this paper, a new distance between u and v is defined. We study the r-dominating set problem and the k-center problem under this new distance in such weighted trees. For the new distance definition, we design an algorithm to solve the r- dominating set problem in weighted trees, which runs in time O(n). And we also design an algorithm to solve the k-center problem in weighted trees, which runs in time O(n^2 log n), where n is the order of the tree.
机构地区 云南大学数学系
出处 《运筹学学报》 CSCD 2009年第2期111-118,共8页 Operations Research Transactions
基金 国家自然科学基金(No.10861012 10561009) 云南省自然科学基金(No.2006F0016M 2007A175M) 云南省中青年学术技术带头人后备人才培养基金(No.2007PY01-21)资助项目
关键词 运筹学 网络 r-控制集 k-中心 多项式时间算法 Operations research, network, r-dominating set, k-center, polynomialtime algorithms
  • 相关文献

参考文献7

  • 1Hakimi S.L. Optimal distribution of switching centers in a communications network and some related graph-theoretic problems[J]. Operations Research, 1965, 13: 462-475.
  • 2Hakimi S.L. Optimal locations of switching centers and the absolute centers and medians of a graph[J]. Operations Research, 1964, 12: 450-459.
  • 3Hochbaum D.S., Shmoys D.B. A unified approach to approximation algorithms for bottleneck problems[J]. Journal of the ACM, 1986, 33: 533-550.
  • 4Hsu W.L, Nemhauser G.L. Easy and hard bottleneck location problems[J]. Discrete Applied Mathematics, 1979, 1: 209-216.
  • 5Garey M.R., Johnson D.S. Computers and Intractability: A Guide to the Theory of NP- Completeness[M]. W.H. Freeman, San Francisco, 1979.
  • 6Kariv O., Hakimi S.L. An algorithmic approach to nerwork location problems. Part Ⅰ: the p-centers[J]. SIAM Journal on Applied Mathematics, 1979, 37: 513-538.
  • 7Khuller S., Sussmann Y.J. The capacitated k-center problem[J]. SIAM Journal on Discrete Mathematics, 2000, 13: 403-418.

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部