期刊文献+

人脸识别中光照补偿问题的实验研究 被引量:9

The Experimental Research of Illumination Compensation Problem in Face Recognition
在线阅读 下载PDF
导出
摘要 光照问题是人脸识别系统中的一个瓶颈问题。将常用于光照补偿的图像处理方法和基于模型的光照锥方法进行了对比实验,实验结果表明光照锥方法具有更好的补偿效果。同时对在构建光照锥时,如何选择训练图像问题进行了实验研究,结果表明应选择光照方向变化适中的图像,构建的光照锥光照补偿效果可以达到最佳,人脸的平均识别率可以提高1~6个百分点。 Illumination is a bottle-neck problem in face recognition. The contrastive experiments between image processing methods usually applied for illumination compensation and the illumination cone method based on model are performed. The results indicate that the illumination cone method is better. At the same time, the experimental research on how to choose training images to establish the cone is carried out. It is demonstrated that if the images in which the illumination direction varies moderately are chosen, the efficiency of illumination compensation can be up to the best, and the average recognition ratio can be improved 1-6 percent.
出处 《工程图学学报》 CSCD 北大核心 2009年第3期113-120,共8页 Journal of Engineering Graphics
关键词 计算机应用 人工智能 人脸识别 光照锥 光照 computer application artificial intelligence face recognition illumination cone illumination
  • 相关文献

参考文献8

  • 1Shashua A, Tammy R R. The quotient image: class-based re-rendering and recognition with varying illumination [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2001, 23(2): 129-139.
  • 2Brunelli R. Estimation of pose and illumination direction for face processing [R]. USA: Massachusetts Institute of Technology, 1994.
  • 3Hallinan P W. A low-dimensional representation of human faces for arbitrary lighting conditions[C]//IEEE Conference on Computer Vision and Pattern Recognition, Seattle: IEEE Computer Society, 1994: 995-999.
  • 4Shashua A. On photometric issues in 3D visual recognition from a single 2D image [J]. Journal of Computer Vision, 1997, 21: 99-122.
  • 5Georghiades A S, Belhumeur P N. Illumination cone models for face recognition under variable lighting: Face[C]//IEEE Conference on Computer Vision and Pattern Recognition, USA: IEEE Computer Society, 1998: 52-59.
  • 6Kouzani A Z, He F, Sammut K, et al. Illumination invariant face recognition[C]//IEEE Conference on System, Man and Cybernetics, 1998, 5: 4240-4245.
  • 7Zhao W Y, CheUappa R. SFS based view synthesis for robust face recognition[C]//The 4th Conference on Automatic Face and Gesture Recognition, Washington IEEE Computer Society, 2000: 285-292.
  • 8Basri R, Jacobs D. Lambertian reflectance and linear subspaces [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2003, 25(2): 218-233.

同被引文献71

引证文献9

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部