期刊文献+

Existence Results for a Class of Semilinear Elliptic Systems

Existence Results for a Class of Semilinear Elliptic Systems
原文传递
导出
摘要 In this paper, we study the existence of nontrivial solutions for the problem{-△u=f(x,u,v)+h1(x)in Ω -△v=g(x,u,v)+h2(x)inΩ u=v=0 onδΩwhere Ω is bounded domain in R^N and h1,h2 ∈ L^2 (Ω). The existence result is obtained by using the Leray-Schauder degree under the following condition on the nonlinearities f and g:{lim s,|t|→+∞f(x,s,t)/s=lim |s|,t→+∞g(x,s,t)/t=λ+1 uniformly on Ω, lim -s,|t|→+∞f(x,s,t)/s=lim |s|,-t→+∞g(x,s,t)/t=λ-,uniformly on Ω,where λ+,λ-∈(0)∪σ(-△),σ(-△)denote the spectrum of -△. The cases (i) where λ+ = λ_ and (ii) where λ+≠λ_ such that the closed interval with endpoints λ+,λ_ contains at most one simple eigenvatue of -△ are considered.
出处 《Journal of Partial Differential Equations》 2009年第2期111-126,共16页 偏微分方程(英文版)
  • 相关文献

参考文献11

  • 1Alves C. O. and de Figueiredo D. G., Nonvariational elliptic systems. Disc. Cont. Dynamical Syst., 2002, 8(2): 289-302.
  • 2B-occardo L. and de Figueiredo D. G., Some remarks on a system of quasilinear elliptic equations. Nonlinear Diff. Eqn. Appl., 2002, 9: 309-323.
  • 3Clement Ph., de Figueiredo D. G. and Mitidieri E., Positive solutions of semilinear elliptic systems. Commun. Part. Diff. Eqns., 1992,17: 923-940.
  • 4de Figueiredo D. G., Sernilinear elliptic systems. Lectures at the International School on Non- linear Differential Equations, Trieste-Italy, October 2006.
  • 5de Figueiredo D. G. and Ruf B., Elliptic systems with nonlinearities of arbitrary growth. Med. J. Math., 2004, 1: 417-431.
  • 6de Figueiredo D. G. and Yang J., A priori bounds for positive solutions of a non-variational elliptic systems. Commun. PDE, 2001, 23(11&12): 2305-2322.
  • 7Cistea F., Montreanu D. and Radulescu V., Weak solutions of quasilinear problems with nonlinear boundary condition. Nonlinear Anal., 2001, 43: 623-636.
  • 8Gallouet T. and Kavian O., Resultat d'existence et de non-existence pour certains probl6mes demi-lineaires a l'infini. Ann. Fac. Sci. Toulouse, 1981, 3(3&4): 201-246.
  • 9Schechter M., The Fucik spectrum. Indiana Univ. Math. J., 1994, 43: 1139-1157.
  • 10Ponce A., Calculus of variations ans optimization. Lectures at the International School on Nonlinear Differential Equations, Trieste-Italy, October 2006.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部