摘要
In this paper, we study the existence of nontrivial solutions for the problem{-△u=f(x,u,v)+h1(x)in Ω -△v=g(x,u,v)+h2(x)inΩ u=v=0 onδΩwhere Ω is bounded domain in R^N and h1,h2 ∈ L^2 (Ω). The existence result is obtained by using the Leray-Schauder degree under the following condition on the nonlinearities f and g:{lim s,|t|→+∞f(x,s,t)/s=lim |s|,t→+∞g(x,s,t)/t=λ+1 uniformly on Ω, lim -s,|t|→+∞f(x,s,t)/s=lim |s|,-t→+∞g(x,s,t)/t=λ-,uniformly on Ω,where λ+,λ-∈(0)∪σ(-△),σ(-△)denote the spectrum of -△. The cases (i) where λ+ = λ_ and (ii) where λ+≠λ_ such that the closed interval with endpoints λ+,λ_ contains at most one simple eigenvatue of -△ are considered.