期刊文献+

TC4钛合金动态本构模型与高速切削有限元模拟 被引量:30

Dynamic constitutive model of TC4 alloy material and finite element simulation of orthogonal high-speed cutting
在线阅读 下载PDF
导出
摘要 利用SHPB实验装置,测试TC4钛合金在20~600℃、应变率为103~104s-1下的流动应力和应变的关系,应用自适应遗传算法(GA)优化建立适合高速切削模拟的Johnson-Cook(JC)热粘塑性本构模型,该模型可在较高温度和较宽应变率范围内精确预测TC4的流动应力。以所建的Johnson-Cook模型为材料本构模型,应用大型商用有限元软件ABAQUS,并使用切屑分离准则,建立高速正交切削有限元模型。将模拟结果与高速正交车削的实验数据进行比较,证实本构模型和有限元模拟的正确性。 A split Hopkinson pressure bar apparatus (SHPB) is used to measure the true flow stress and true strain relationship for TC4 alloy from a strain rate of 1 000 to 10 000 s^-1 and from room temperature to 600℃. Based on the experimental data, Genetic Algorithm (GA) determined the parameters for a Johnson-Cook thermo-viscoplastic constitutive equation, and the Johnson-Cook (JC) model can be used to predict flow stress for TC4 alloy under the conditions of higher temperature and higher strain rate. To simulate high speed orthogonal cutting of TC4 alloy, a commercial FE code (ABAQUS/Explicit) has been used. This code adopts JC material model established and shear failure criterion. Finally, by comparison between experimental and numerical cutting force and chip geometry, it is showed that the constitutive model and finite element simulation are reasonable.
作者 鲁世红 何宁
出处 《兵器材料科学与工程》 CAS CSCD 2009年第1期5-9,共5页 Ordnance Material Science and Engineering
基金 国家自然科学基金(10477008)
关键词 TC4钛合金 SHPB 本构模型 自适应遗传算法 有限元模拟 TC4 alloy SHPB constitutive equation GA finite clement simulation
  • 相关文献

参考文献15

  • 1Madalina Calamaz,Dominique Coupard.Franck Girot.A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti-6A1-4V[J].International Journal of Machine Tools and Manufacture.2008,48(3-4):275-288.
  • 2Domenico Umbrello.Finite element simulation of conventional and high speed machining of Ti-6A1-4V alloy[J].Journal of Materials Processing Technology,2008,196(1-3):79-87.
  • 3Sia Nemat-Nasser,Wei-Guo Guo,Nesterenko Vitali F,et al.Dynamic response of conventional and hot isostatically pressed Ti-6AI-4V alloys:experiments and modeling[J].Mechanics of Materials,2001,33(8):425-439.
  • 4Li Qiaug,Xu Y B,Bassim M N.Dynamic mechanical behavior of pure titanium[J].Journal of Materials Processing Technology,2004,155-156(30):1889-1892.
  • 5Songwon Seo,Oakkey Min,Hyunmo Yang,et al.Constitutive equation for Ti-6Al-4V at hish temperatures measured using the SHPB technique[J].International Journal of Impact Engineering,2005,31(6):735-754.
  • 6徐文臣,单德彬,吕炎.利用BP神经网络预测BT20钛合金的流动应力[J].兵器材料科学与工程,2007,30(3):33-36. 被引量:8
  • 7Mousavi Anijdan S H,Madaah-Hosseini H R,Bahrami A.Flow stress optimization for 304 stainless steel under cold and warm compression by artificial neural network and genetic algorithm[J].Materials & Design,2007,28(2):609-615.
  • 8Bruni C,Forcellese A,Gabrielli F.et al.Modelling of the rheological behaviour of aluminium alloys in muhistep hot deformation using the multiple regression analysis and artificial neural network techniques[J].Journal of Materials Processing Technology,2006,177(1-3):323-326.
  • 9杨勇,柯映林,董辉跃.金属切削加工中航空铝合金板材的本构模型[J].中国有色金属学报,2005,15(6):854-859. 被引量:21
  • 10Kapoor R,Pal D,Chakravartty J K.Use of artificial neural networks to predict the deformation behavior of Zr-2.5Nb0.5Cu[J].Journal of Materials Processing Technology,2005,169(2):199-205.

二级参考文献39

  • 1王少林,阮雪榆,俞新陆,陈森灿,胡宗式.金属高温塑性本构方程的研究[J].上海交通大学学报,1996,30(8):20-24. 被引量:14
  • 2BATESDM WATTSDG.非线性回归分析及其应用[M].北京:中国统计出版社,1997.16-27.
  • 3王学仁 温忠.应用回归分析[M].重庆:重庆大学出版社,1991.119-128.
  • 4Harding J,Wood E O,Campbell J D.Tensile testing of materials at impact rates of strain[J].Journal of Mechanical Engineering Science,1960,2(1):88-96.
  • 5Backer W E,Yew C H.Strain-rate effects in the propagation of torsional plastic wave[J].Journal of Applied Mechanics,1966,33(6):917-923.
  • 6Campbell J D,Dowling A R.The behavior of materials subjected to dynamic incremental shear loading[J].Journal of Mechanics and Physics of Solids,1970,18(1):43-63.
  • 7Duffy J,Campbell J D,Hawley R H.On the use of a tensional split hopkinson bar to study rate effects in 1100-0aluminum[J].Journal of Applied Mechanics,1971,38(1):83-91.
  • 8Bacon C.An experimental method for considering dispersion and attenuation in a viscoelastic Hopkinson bar[J].Experimental Mechanics,1998,38(4):242-249.
  • 9ZHAO Han,Gary G.A three dimensional analytical solution of the longitudinal wave propagation in an infinite linear viscoelastic cylindrical bar[J].Journal of Mechanics and Physics of Solids,1995,43(8):1 335-1 348.
  • 10Follansbee P S,Franz C.Wave propagation in the split Hopkinson pressure bar[J].Journal of Engineering Materials and Technology,1983,105(1):61-66.

共引文献79

同被引文献239

引证文献30

二级引证文献152

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部