期刊文献+

混合品种装配线平衡问题的一种混合搜索机制的蚁群算法 被引量:31

Hybrid Behavior Ant Colony Optimization for Mixed-model Assembly Line Balancing Problem
在线阅读 下载PDF
导出
摘要 为有效求解混合品种装配线平衡问题,通过组合不同品种的优先顺序图,将混合品种装配线转化为单一品种的装配线形式。提出了一种带信息素总合规则的混合搜索机制的蚁群算法,通过在任务和任务分配序列的位置之间释放信息素、采用信息素总合规则以进行更有效的信息素累积,构造了综合考虑利用、探索和随机搜索的混合搜索机制,考虑了局部信息素更新和全局信息素更新。为提高搜索效率,以协同考虑装配任务作业时间和后续任务数的分级位置权重作为蚁群算法的启发式信息。最后通过实例验证,说明了算法的有效性。 For the purpose of solving mixed-model assembly line balancing problem (MMALBP), MMALBP is transformed into a single-model assembly line balancing problem with a combined precedence diagram. A hybrid behavior ant colony optimization with pheromone summation rules for MMALBP is proposed. The proposed algorithm makes use of the trail information which is deposited between the task and the task selected position, and pheromone summation rules are adopted. Hybrid search mechanism, which comprehensively considers utilization, exploration and random search, are adopted. Global pheromone trail update and local pheromone trail update are considered. The heuristic information is set to the position weight for tasks of MMALBP, which collaboratively considers the operation time of assembly task and the number of follow-up tasks. Finally, example verification is carried out, and which indicates the validity of the proposed algorithm.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2009年第5期95-101,共7页 Journal of Mechanical Engineering
基金 国家教育部博士点基金(200806131014) 四川省科技攻关计划(2006Z08-037) 西南交通大学科技发展基金(2007A13)资助项目
关键词 混合品种装配线平衡 蚁群算法 启发式方法 Mixed-model assembly line balancing Ant colony optimization Heuristic approach
  • 相关文献

参考文献20

  • 1SCHOLL A, BECKER C. State-of-the-art exact and heuristic solution procedures for simple assembly line balancing[J]. European Journal of Operational Research, 2006, 168(3): 666-693.
  • 2SCHOLL A. Balancing and sequencing of assembly lines[M]. 2nd ed. Heidelberg: Physica-Verlag, 1999.
  • 3THOMOPOULOS N T. Mixed model line balancing with smoothed station assignments[J]. Management Science, 1970, 16(9): 593-603.
  • 4ROBERTS S D, VILLA C D. On a multiproduct assembly line-balancing problem[J]. AIIE Transactions,1970, 2(4): 361-365.
  • 5BERGER I, BOURJOLLY J M, LAPORTE G. Branch-and-bound algorithms for the multiproduct assembly line balancing problem[J]. European Journal of Operational Research, 1992, 58(2): 215-222.
  • 6EREL E, GOKCEN H. Shortest-route formulation of mixed-model assembly line balancing problem[J]. European Journal of Operational Research, 1999, 116(1): 194-204.
  • 7BUKCHIN Y, RABINOWITCH I. A branch-and-bound based solution approach for the mixed-model assembly line-balancing problem for minimizing stations and task duplication costs[J]. European Journal of Operational Research, 2006, 174(1): 492-508.
  • 8GOKCEN H, EREL E. A goal programming approach to mixed-model assembly line balancing problem[J]. International Journal of Production Economics, 1997, 48(2): 177-185.
  • 9MCMULLEN P R, FRAZIER G V. A heuristic for solving mixed-model line balancing problems with stochastic task durations and parallel stations[J]. International Journal of Production Economics, 1997, 51(3): 177-190.
  • 10JIN M Z, WU S D. A new heuristic method for mixed model assembly line balancing problem[J]. Computers & Industrial Engineering, 2003, 44(1): 159-169.

二级参考文献18

  • 1COLORNI A, DORIGO M, MANIEZZO V. Distributed optimization by ant colonics [A]. Proceedings of 1st European Conference on Artificial Life (ECAL'91)[C]. Paris, France:Elsevier Publishing, 1991. 134- 142.
  • 2SAVELSBERGH M. Local search for routing problem with time windows [J]. Annals of Operations Research, 1985,16(4) :285-305.
  • 3MARIUS M, SOLOMON M. Algorithms for vehicle routing and scheduling problems with time window constraints[J].Operations Research, 1987,35(2) :763-781.
  • 4THANGIAH S, NYGARD K,JUELL P G. A genetic algorithm system for vehicle routing with time window[A]. Proceedings of the Seventh Conference on Artificial Intelligence Applications[C]. Florida, USA: Morgan Koufmann Publishers, 1991. 322-325.
  • 5JOE L,ROGER L. Multiple vehicle routing with time and capacity constrains using genetic algorithms[A]. Proceedings of the Fifth International Conference on Genetic Algorithms[C].Florida, USA: AAAI, 1993. 452-459.
  • 6STUTZLE T,HOOS H H. Max-Min Ant System[J]. Future Generation Computer Systems, 2000,16(9): 889-914.
  • 7REIMANN M,DOERNER K,HARTL R F. D-Ants: savings based ants divide and conquer the vehicle routing problem [J]. Computers & Operations Research, 2004,31 (5): 563-591.
  • 8BULLNHEIMER B, HARTL R, STRAUSS C. An improved ant system algorithm for the vehicle routing problem [J]. Annals of Operations Research 1999, 89 (13): 319 -328.
  • 9BRYSY O,DULLAERT W. A fast evolutionary metaheuristic for the vehicle routing problem with time windows[J].International Journal of Artificial Intelligence Tools, 2002,12 (2):143-157.
  • 10McMullen P R, Frazier G V. A heuristic for solving mixed-model line balancing problems with stochastic task durations and parallel stations. International Journal of Production Economics, 1997, 51 (3):177~190

共引文献58

同被引文献235

引证文献31

二级引证文献161

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部