期刊文献+

听觉感知特征在目标识别中的应用 被引量:16

Applications of Auditory Perceptual Features into Targets Recognition
原文传递
导出
摘要 将听觉感知特征用于声学目标识别,实现对稳态噪声样本的识别,证明听觉感知特征在声学目标识别领域中的有效性。首先通过语音和乐音识别领域的研究成果确定听觉感知特征的提取方法,然后在汽车、飞机、舰船和乐器等不同类型的声目标中进行识别研究。结果显示:对于平稳噪声样本,听觉感知特征中的谱特征具有突出的优越性,其中基于Mel倒谱系数、谱下降值、分段谱质心、分段谱质心带宽和分段谱通量能够识别目标,且具有较高的识别率和稳健性。 The efficiency of recognition features is one of the key problems in recognizing acoustic targets accurately. Simulating the function of auditory system proposed in recent years has been viewed as a new feature extraction approach. In this study, auditory perceptual features were applied into recognizing the steady-state sound, which was investigated to prove which feature is effective. Firstly, the extraction approaches of the auditory perceptual features were previously identified by researching on the musical acoustics and speech literature. Secondly, a number of recognition researches were performed to recognize the acoustic targets in different fields, such as vehicles, airplanes, ships and musical instruments. Finally, the recognition results show that the spectral signal features of auditory perceptual features are useful for steady-state sounds classification. The features which have good and steady performance include: the mel-Frequency cepstrum coefficients and the spectral roll-off, as well as several features based on sub-band of spectral centroid, bandwidth and flux.
作者 王娜 陈克安
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第10期3128-3132,共5页 Journal of System Simulation
关键词 听觉感知特征 特征提取 目标识别 谱质心 auditory perceptual feature feature extraction target recognition spectral centroid
  • 相关文献

参考文献11

  • 1E Zwicker, H Fast1. Psychoacoustics: facts and models [M]. Berlin, Germany: Springer Verlag, 1999.
  • 2G L Collier. A comparison of novices and experts in the identification of sonar signals [J]. Speech Communication (S0167-6393), 2004, 43(4): 297-310.
  • 3张焱,张杰,黄志同.基于一种听觉模型的特征提取及语音识别[J].南京理工大学学报,1998,22(2):113-116. 被引量:7
  • 4阳雄,程玉胜.短时能量分析及人耳的主观听觉在船舶辐射噪声特征提取中的研究[J].声学技术,2004,23(1):11-13. 被引量:14
  • 5陆振波,章新华,朱进.基于MFCC的舰船辐射噪声特征提取[J].舰船科学技术,2004,26(2):51-54. 被引量:11
  • 6Tae Hong Park. Towards Automatic Musical Instrument Timbre Recognition [D]. USA: Princeton University, 2004.
  • 7McAdams S, Beauehamp J W, Meneguzzi S. Discrimination of Musical Instruments Sounds Resynthesized with Simplified Spectrotemporal Parameters [J]. JASA (S0001-4966), 1999, 105(2): 882-897.
  • 8Eronen A, Klapuri A. Musical Instrument Recognition Using Cepstral Coefficients and Temporal Features [C]// Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2000. USA: IEEE, 2000: 753-756.
  • 9Brown J C, Houix O, McAdams S. Feature Dependence in the Automatic Identification of Musical Woodwind Instruments [J]. JASA (S0001-4966), 2001, 109(3): 1064-1072.
  • 10Giulio Agostini, Maurizio Longari, Emanuele Pollastri. Musical Instrument Timbres Classification with Spectral Features [J]. EURASIP Journal on Applied Signal Processing (S1110-8657), 2003 2003(1): 5-14.

二级参考文献9

  • 1林宝成,黄志同.基于听觉模型的子波变换语音处理[J].数据采集与处理,1995,10(4):269-274. 被引量:3
  • 2边肇祺.模式识别[M].清华大学出版社,1999..
  • 3梁之安.听觉感受和辨别的神经机制[M].上海:上海教育出版社,2001.35-37.
  • 4刘载芳 王大训 张友奎.声纳听音判型[M].海军出版社,1999.10-15.
  • 5黄建国 赵建平.用低阶AR模型极点法进行舰船目标分类[J].水中兵器,1996,(2):26-32.
  • 6Boashash B, O'Shea P. A Methodology for Detection and Classification of some Underwater Acoustic Signals Using Time-Frequency analysis Approaches. IEEE Transactions on Acoustics,Speech and Signal Processing.1990, 38(11):1829-1841
  • 7Learned R E, Wilsky A S. A Wavelet Packet Approach to Transient Signal Classification. Applied and Computational Harmonic Analysis, 1995,(2):265-278.
  • 8Alpay Koc. Acoustic Feature Analysis for Robust Speech Recognition. BS.in E.E., Bilkent University,1999.
  • 9陈庚,魏学环,王玉红,金璋瑞.试用聚类分析对船只噪声和脑电分类[J].声学学报,1991,16(4):282-289. 被引量:5

共引文献27

同被引文献208

引证文献16

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部