期刊文献+

An ectopic study of tissue-engineered bone with Nell-1 gene modified rat bone marrow stromal cells in nude mice 被引量:5

An ectopic study of tissue-engineered bone with Nell-1 gene modified rat bone marrow stromal cells in nude mice
原文传递
导出
摘要 Background Tissue engineering techniques combined with gene therapy have been recently used to improve osteogenesis. NEL-like molecule-1 (Nell-1), a novel growth factor, has been reported to have specificity for osteochondral lineage. The study assessed the osteogenic differentiation of rat bone marrow stromal cells (bMSCs) after Nell-1 gene modification and examined its ectopic bone formation ability in a nude mice model with tissue engineering technique. Methods bMSCs obtained from Fischer 344 rats were transduced with either AdNell-1 (Nell-1 group) or Ad-β-galactosidase (AdLacZ, LacZ group) or left untransduced (untransduced group). The expression of Nell-1 protein was determined by Western blotting and transfer efficiency was assessed, mRNA expressions of osteopontin (OP), bone sialoprotein (BSP) and osteocalcin (OC) were assessed by real-time PCR 0, 3, 7, 14, and 21 days after gene transfer. Alkaline phosphatase (ALP) activity was measured and von Kossa test was also conducted. Finally, with a tissue engineering technique, gene transduced bMSCs, combining with β-tricalcium phosphate (β-TCP) at a concentration of 2×10^7 cells/ml, were implanted at subcutaneous sites on the back of nude mice. Four weeks after surgery, the implants were evaluated with histological staining and computerized analysis of new bone formation. Results Under current transduction conditions, gene transfer efficiency reached (57.9±6.8)%. Nell-1 protein was detected in Nell-1 group but not in untransduced group and LacZ group. Induced by Nell-1, BSP and OP expression were increased at intermediate stage and OC expression was increased at later stage. ALP activity and the number of calcium nodules were highest in Nell-1 group. Four weeks after implanted into nude mice subcutaneously, the percentage of new bone area in Nell-1 group was (18.1±5.0)%, significantly higher than those of untransduced group (11.3±3.2)% and LacZ group (12.3±3.1)% (P〈0.05). Conclusions This study has demonstrated the ability of Nell-1 to induce osteogenic differentiation of rat bMSCs in vitro and to enhance bone formation with a tissue engineering technique. The results suggest that Nell-1 may be a potential osteogenic gene to be used in bone tissue engineering. Background Tissue engineering techniques combined with gene therapy have been recently used to improve osteogenesis. NEL-like molecule-1 (Nell-1), a novel growth factor, has been reported to have specificity for osteochondral lineage. The study assessed the osteogenic differentiation of rat bone marrow stromal cells (bMSCs) after Nell-1 gene modification and examined its ectopic bone formation ability in a nude mice model with tissue engineering technique. Methods bMSCs obtained from Fischer 344 rats were transduced with either AdNell-1 (Nell-1 group) or Ad-β-galactosidase (AdLacZ, LacZ group) or left untransduced (untransduced group). The expression of Nell-1 protein was determined by Western blotting and transfer efficiency was assessed, mRNA expressions of osteopontin (OP), bone sialoprotein (BSP) and osteocalcin (OC) were assessed by real-time PCR 0, 3, 7, 14, and 21 days after gene transfer. Alkaline phosphatase (ALP) activity was measured and von Kossa test was also conducted. Finally, with a tissue engineering technique, gene transduced bMSCs, combining with β-tricalcium phosphate (β-TCP) at a concentration of 2×10^7 cells/ml, were implanted at subcutaneous sites on the back of nude mice. Four weeks after surgery, the implants were evaluated with histological staining and computerized analysis of new bone formation. Results Under current transduction conditions, gene transfer efficiency reached (57.9±6.8)%. Nell-1 protein was detected in Nell-1 group but not in untransduced group and LacZ group. Induced by Nell-1, BSP and OP expression were increased at intermediate stage and OC expression was increased at later stage. ALP activity and the number of calcium nodules were highest in Nell-1 group. Four weeks after implanted into nude mice subcutaneously, the percentage of new bone area in Nell-1 group was (18.1±5.0)%, significantly higher than those of untransduced group (11.3±3.2)% and LacZ group (12.3±3.1)% (P〈0.05). Conclusions This study has demonstrated the ability of Nell-1 to induce osteogenic differentiation of rat bMSCs in vitro and to enhance bone formation with a tissue engineering technique. The results suggest that Nell-1 may be a potential osteogenic gene to be used in bone tissue engineering.
出处 《Chinese Medical Journal》 SCIE CAS CSCD 2009年第8期972-979,共8页 中华医学杂志(英文版)
基金 This study was supported by grants from National Natural Science Foundation of China (No. 30400502 and 30772431), Program for New Century Excellent Talents in University (NCET-08-0353), Science and Technology Commission of Shanghai Municipality (No. 07DZ22007, 08410706400, 08JC1414400, and 08QH1401700), Shanghai Rising-star Program (No. 05QMX1426), and Shanghai Education Committee (No. 07SG 19).
关键词 bone marrow stromal cells Nel-like protein type 1 gene tissue engineering bone marrow stromal cells Nel-like protein type 1 gene tissue engineering
  • 相关文献

同被引文献22

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部