期刊文献+

基于聚类和文化算法的补偿模糊神经网络建模方法

A Compensatory Fuzzy Neural Network Modeling Method Based on Clustering and Cultural Algorithms
在线阅读 下载PDF
导出
摘要 根据补偿模糊神经网络的建模特点,提出了基于聚类和文化算法的补偿模糊神经网络建模方法。该网络的学习分为两步:结构辨识和参数辨识。在结构辨识中,采用改进的聚类算法确定模糊规则数及初始参数,构造一个初始模糊模型;在参数辨识中,采用基于多层信念空间的文化算法对具有5层结构的补偿模糊神经网络参数进一步优化,使其具有更高的精度。通过对TE过程的故障诊断建模,结果表明该网络在建模精度和收敛速度上均优于常规补偿模糊神经网络和常规模糊神经网络。 According to the characteristic of compensatory fuzzy neural networks(CFNN), this paper proposes a compensatory fuzzy neural network based on clustering and cultural algorithms. The identification of the proposed network is composed of two steps:structure identification and parameter identification. In the process of structure identification, the improved clustering method is used to obtain the number of inference rules of fuzzy model and the initial parameters in order to construct the initial fuzzy model; During parameter identification, cultural algorithm based on multilayer belief spaces is used to optimize the parameters of the compensatory fuzzy neural network with five layers so that the model obtains a higher accuracy. Finally, the result of the fault diagnosis modeling of TEP shows that the proposed network is superior to the conventional FNN and CFNN in modeling precise and convergence rate.
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第2期302-307,共6页 Journal of East China University of Science and Technology
基金 国家863计划课题(2007AA04Z171)
关键词 补偿模糊神经网络(CFNN) 聚类方法 文化算法 compensatory fuzzy neural networks(CFNN) clustering method cultural algorithms
  • 相关文献

参考文献10

  • 1Wong Chingching. A hybrid clustering and gradient descent approach for fuzzy modeling [J].IEEE Transactions on Systems, Man and Cybernetics:Part B, 1999,29(6) : 686-693.
  • 2刘军,崔红,庞中华,李桂丽.基于综合算法的补偿模糊神经网络建模方法[J].青岛科技大学学报(自然科学版),2006,27(1):74-77. 被引量:4
  • 3Zhang Yanqing,Kandel A. Compensatory neurofuzzy systems with fast learning algorithms[J]. IEEE Transactions on Neural Networks,1998,9(1) :83-105.
  • 4刘志华,刘建成,道理,杨海燕.应用聚类和遗传算法获取模糊模型[J].控制工程,2007,14(6):618-621. 被引量:4
  • 5魏桂英,郑玄轩.层次聚类方法的CURE算法研究[J].科技和产业,2005,5(11):22-24. 被引量:12
  • 6Reynolds R G,Zhu Shinin. Knowledge-based function optimization using fuzzy cultural algorithms with evolutionary programming [J]. IEEE Transactions on Systems, Man and Cybernetics:Part B,2001,31(1) :1-18.
  • 7Yuan Xiaohui, Yuan Yanbin. Application of culture algorithm to generation scheduling of hydrothermal systems [J]. Energy Conversion and Management, 2006,47: 2192-2201.
  • 8Gao Fang, Cui Gang, Liu Hongwei. Integration of genetic algorithm and cultural algorithms for constrained optimization [J]. Lecture Notes in Compture Science, 2006, 4234: 817- 825.
  • 9黄海燕,顾幸生,刘漫丹.求解约束优化问题的文化算法研究[J].自动化学报,2007,33(10):1115-1120. 被引量:40
  • 10Chiang L H, Russell E L, Braatz R D. Fault Detection and Diagnosis in Industrial Systems [M]. London:Springer-Verlag, 2001.

二级参考文献38

  • 1贺益君,陈德钊.连续约束蚁群优化算法的构建及其在丁烯烷化过程中的应用[J].化工学报,2005,56(9):1708-1713. 被引量:12
  • 2[1]Han Jiawei,Kamber Micheline . Data Mining Concepts and Techniques . New York: Academic Press, 2001
  • 3[2]Guha S, Rastogi R, Shim K. Cure: An Efficient Clustering Algorithm for Large Database. In: Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data,Seattle,Washington, 1998. 73-84
  • 4Kiguchi K,Tanaka T,Fukuda T.Neuro-fuzzy control of a robotic exoskeleton with EMG signals[J].IEEE Transactions on Fuzzy Systems,2004,12(4):481-490.
  • 5Lin C M,Hsu C F.Supervisory recurrent fuzzy neural network control of wing rock for slender delta wings[J].IEEE Transactions on Fuzzy Systems,2004,12(5):733-742.
  • 6Vieira J J,Dias F M,Mota A.Artificial neural networks and neural-fuzzy systems for modeling and controlling real systems:a comparative study[J].Engineering Applications of Artificial Intelligence,2004,17(3):265-273.
  • 7Lin C J,Chin C C.Prediction and identification using wavelet-based recurrent fuzzy neural networks[J].IEEE Trans on Systems,Man and Cybernetics(Part B),2004,34(5):2144-2154.
  • 8Yu W,Li X O.Fuzzy identification using fuzzy neural networks with stable learning algorithms[J].IEEE Transactions on Fuzzy Systems,2004,12(3):411-420.
  • 9Duh F B,Lin C T.Tracking a maneuvering target using neural fuzzy network[J].IEEE Transactions on Systems,Man and Cybernetics (Part B),2004,34(1):16-32.
  • 10Wang W,Ismial F,Golnaraghi F.A neuro-fuzzy approach to gear system monitoring[J].IEEE Transactions on Fuzzy Systems,2004,12(5):710-723.

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部