期刊文献+

基于神经网络的中长期用电量预测模型 被引量:7

Mid and Long Term Electric Load Modeling Based on Neural Networks
在线阅读 下载PDF
导出
摘要 粒子群算法用于优化神经网络的权值和阈值,构成粒子群神经网络。将其应用于我国某地区中长期用电量预测建模,并采用滚动时间窗技术来处理用电量预测模型的输入输出数据。通过与实际数据对比,结果表明,采用滚动时间窗技术的粒子群神经网络用于该地区中长期用电量预测建模可行有效,模型预测结果满足要求。 Particle swarm optimization algorithm is used to optimize neural networks'weights and thresholds in this paper, constructing particle swarm neural networks. Then it is used to model mid and long term electric load. The input/output data of the model are processed using the sliding time window technique. Compared with the real data, particle swarm neural network with sliding time window technique in modeling the mid and long term electric load is effective, and the model can meet the actual demands.
作者 陈国初 刘军
出处 《上海电机学院学报》 2009年第1期20-24,共5页 Journal of Shanghai Dianji University
基金 上海市教委第5期重点学科项目(J51901) 上海市教委项目(06VZ002)
关键词 粒子群算法 神经网络 滚动时间窗 用电量 模型 particle swarm optimization (PSO) neural network sliding time window electricload model
  • 相关文献

参考文献10

二级参考文献31

共引文献131

同被引文献43

  • 1康重庆,夏清,张伯明.电力系统负荷预测研究综述与发展方向的探讨[J].电力系统自动化,2004,28(17):1-11. 被引量:522
  • 2田有文,王文涛,王思宇.基于BP神经网络的农村用电量预测的研究[J].沈阳农业大学学报,2005,36(4):506-507. 被引量:4
  • 3Bo Jin, Tang Y C, Zhang Yanqing. Support vector machines with genetic fuzzy feature transformation for biomedical data classification[J]. Information Sciences, 2007, 177(2) :476--489.
  • 4Matteo Pardo, Giorgio Sberveglieri. Classification of electronic nose data with support vector machines[J]. Sensors and Actuators B: Chemical, 2005, 107(2):730- 737.
  • 5B, Li Y X, Yu X H, et al. A Modified Particle Swarm Optimization and Radial Basis Function Neural Network Hybrid Al- gorithm Model and Its Application [ C ]//2009 WR1 Global Congress on Intelligent Systems,2009( 1 ) :134-138.
  • 6Wang H, Li B S, Han X Y, et al. Study of Neural Networks for Electric Power Load Forecasting [ C ]//The Third International Symposium on Neural Networks Prneeedings,2010 : 1277-1283.
  • 7Coelho L S. Gaussian Quantum Behaved Particle Swarnl Optimization Approaches for Constrained Engineering Design Problems[ J ]. Expert Systems with Applications, 2010,37 ( 2 ) : 1676-1683.
  • 8Sun J, Fang W, Xu X J, etal. Quantum-Behaved Particle Swarm Optimization:Analysis of the Individual Particle's Behavior and Parameter Selection [ J ]. Evolutionary Computation, 2012,20 ( 3 ) : 349 -393.
  • 9李楠,曾兴雯.基于EMD和神经网络的时间序列预测[J].西安邮电学院学报,2007,12(1):51-54. 被引量:12
  • 10B Shi, et al. A modified particle swarm optimization and radial ba-sis function neural network hybrid algorithm model and its applica-tion [ C]. 2009 WRI Global Congress on Intelligent Systems, 2009-1 :134 - 138.

引证文献7

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部