期刊文献+

一种基于滑动窗口的多关系模式频度更新算法

Multi-relational pattern frequency update algorithm based on sliding window
在线阅读 下载PDF
导出
摘要 面向多个相关数据流的挖掘算法研究尚处于起步阶段。作为多数据流挖掘算法的基础,模式频度更新算法仍然存在计数不准确、性能较低等问题,难以以此构造有效的挖掘算法。通过引入多关系挖掘概念以及目标关系定义,进而限定计数对象,提出了一种基于滑动窗口的多关系模式频度更新算法MRPFU。该算法监视各数据流窗口的更新情况,采用计数传播策略,减少了时间与空间复杂度。理论分析及实验结果证明了所提算法的有效性且具有较高性能。 Presently, the study of mining algorithms for multiple correlated data streams is still at a primitive stage. As the basis of mining multiple data streams, the methods of updating the frequencies of patterns, are bearing problems of count deviation, low performances etc. Consequently, efficient mining algorithms are difficult to be built either. The concepts of multi-relational data mining and target relation are introduced firstly, and the count object is defined accordingly. Then an algorithm based on sliding windows for updating frequencies of multi-relational patterns is proposed, which monitors the updates of streams, adopts the strategy of count propagation, and relieves the complexity of runtime and space. The theoretical analysis and experiments prove its effectiveness and performance.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2009年第3期671-676,共6页 Systems Engineering and Electronics
基金 国家自然科学基金资助课题(60675030)
关键词 数据挖掘 数据流 滑动窗口 多关系数据挖掘 频度更新 data mining data stream sliding window multi-relational data mining frequency update
  • 相关文献

参考文献17

  • 1Han J, Kamber M. Data mining:concepts and techniques[M]. San Francisco : Morgan Kau fmann , 2000.
  • 2Babcock B, Babu S, Datar M, et al. Models and issues in data stream systems[C]. Proc. of the 21th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. Wisconsin : Madison, 2002 : 1 - 16.
  • 3Gaber M M, Zaslavsky A, Krishnaswamy S. Mining data streams : A review[J]. ACM SIGMOD Record, 2005, 34 (2) : 18 - 26.
  • 4Garofalakis M N, Gehrke J, Rastogi R. Querying and mining data streams:you only get one look[C]. Proc. of the 28th Int. Conf. on Very Large Data Bases, Hong Kong, 2002.
  • 5Kontaki M, Papadopoulos A N, Manolopoulos Y. Efficient icremental subspaee clustering in data streams[C]. Proc. of Database Engineering and Applications Symposium, Delhi, India, 2006.
  • 6Cormode G, Muthukrishnan S. What's new: Finding significant differences in network data streams[C]. Proc. of IEEE INFOCOM , Hong Kong , 2004.
  • 7Chen R, Sivakumar K, Kargupta H. Distributed web mining using bayesian networks from multiple data streams[C]. Proc. of ICDM', San Jose ,California, 2001.
  • 8Xu Y, Wang K, Fu A, et al. Classification spanning oarrelated data streams[C]. Proc. of CIKM', Arlington, Virginia, 2006.
  • 9Dzeroski S, Lavrae N. Relational data mining [M]. Berlin: Springer, 2001.
  • 10Terry D, Goldberg D, Nichols D,et al. Continuous queries over append-only databases[C]. Proc. of ICMD, 1992 . 321 - 330.

二级参考文献12

  • 1钱江波,徐宏炳,王永利,刘学军,董逸生.多数据流滑动窗口并发连接方法[J].计算机研究与发展,2005,42(10):1771-1778. 被引量:10
  • 2T K Sellis.Multiple query optimization[J].ACM Trans on Database Systems,1988,13(1):23-52
  • 3P Roy,S Seshadri,S Sudarshan,et al.Efficient and extensible algorithms for multi query optimization[C].In:Proc of ACM SIGMOD 2000.New York:ACM Press.2000.249-260
  • 4J Chen,D Dewitt.dynamic re-grouping of continuous queries[C].In:Proc of the 28th VLDB.San Fransisco:Morgan Kaufmann,2002.430-441
  • 5Y Zhu,E Rundensteiner,G Heineman.Dynamic plan migration for continuous queries over data streams[C].In:Proc of ACM SIGMOD 2004.New York:ACM Press,2004.431-442
  • 6A N Wilschut,P Apers.Dataflow query execution in a parallel main-memory environment[C].In:PDIS.Los Alamitos:IEEE Computer Society Press.1991.68-77
  • 7V Raman,A Deshpande,J M Hellerstein.Using state modules for adaptive query processing[C].In:Proc of the 19th Int'l Conf on Data Engineering(ICDE).Los Alamitos:IEEE Computer Society Press,2003.353-364
  • 8J Kang,J F Naughton,S Viglas.Evaluating window joins over unbounded streams[C].In:Proc of the 19th Int'l Conf on Data Engineering(IcDE).Los Alamitos:IEEE Computer Society Press,2003.341-352
  • 9L Golab,M T Ozsu.Processing sliding window multi-joins in continuous queries over data streams[C].In:Proc of the 29th Int'l Conf on VLDB.San Fransisco:Morgan Kaufmann,2003.500-511
  • 10S Viglas,J F Naughton,J Burger.Maximizing the output rate of multi-way join queries over streaming information sources[C].In:Proc of the 29th Int'l Conf on VLDB.San Fransisco:Morgan Kaufmann,2003.285-296

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部