期刊文献+

纳米流体脉动热管的性能实验 被引量:14

Experimental investigation of heat transfer performance of nanofluid pulsating heat pipes
在线阅读 下载PDF
导出
摘要 建立了脉动热管的可视化实验台,对以体积分数为1%的TiO2/H2O和CuO/H2O纳米流体及基流体为工质、55%充液率的脉动热管性能进行了实验研究.结果表明,工质静止时,纳米颗粒在脉动热管中会发生沉淀,但工质的运动能够使沉淀纳米颗粒再次悬浮;随着温度的升高,纳米颗粒的悬浮稳定性减弱;与基流体工质相比,纳米流体脉动热管的最小启动功率低,启动时间较短,工作温度低,传热热阻小,温度波动振幅小、频率高;纳米流体能大幅提高脉动热管的传热性能,工作温度为110℃时,蒸馏水、TiO2/H2O及CuO/H2O脉动热管的传热热阻分别为0.23℃/W、0.11℃/W和0.13℃/W;两种纳米流体脉动热管的传热性能接近. Visualization experimental investigation of pulsating heat pipes (PHP) was conducted. A PHP was charged with distilled water, TiO2/H2O nanofluid and CuO/H2O nanofluid as working fluids by a filling ratio of 55 %, respectively. Both the nanofluids were made of distilled water and 1% volume fraction of nanoparticles. Experimental results showed that nanoparticles settled down in the motionless base liquid, but the oscillating motion in PHP would excite them to suspend. The suspending stability of nanofluid got weak as temperature increased. Compared with the distilled water PHP, nanofluid PHP could work in lower heat loads, and had shorter startup time, lower thermal resistance, and temperature oscillation of smaller amplitude and higher frequency. At the working temperature of 110℃, the thermal resistance of PHP was 0.23℃/W, when it was filled with distilled water, and the thermal resistance would decrease to 0.11 ℃/W or 0.13 ℃/W, when it was charged with TiO2/H2O or CuO/H2O. The two nanofluid PHPs had similar heat transfer oerformance.
作者 冯剑超 曲伟
出处 《中国科学院研究生院学报》 CAS CSCD 北大核心 2009年第1期50-57,共8页 Journal of the Graduate School of the Chinese Academy of Sciences
基金 国家自然科学基金(50676096)资助
关键词 脉动热管 纳米流体 悬浮稳定性 启动 传热 pulsating heat pipe(PHP), nanofluid, suspending, startup, heat transfer performance
  • 相关文献

参考文献19

二级参考文献20

  • 1杨蔚原,张正芳,马同泽.脉动热管运行的可视化实验研究[J].工程热物理学报,2001,22(S1):117-120. 被引量:32
  • 2曲伟 马同泽.低功率下脉动热管运行机制的初步分析.第七届全国热管会议论文集[M].湛江,2000.41-46.
  • 3林宗虎.汽液两相流与传热[M].西安:西安交通大学出版社,1987.149-168.
  • 4杨世铭.传热学.第2版[M].北京:高等教育出版社,1986..
  • 5[1]Hisateru Akachi, Frantisek Polasek and Petr Stulc. Pulsating Heat Pipes, Heat Pipe Technology-Theory, Applications and Prospects. In: Proc. of the 5th IHPS. Melbourne, Australia, 1996. 208-217
  • 6[2]R T Dobson. Theoretical and Experimental Modeling of an Open Oscillatoty Heat Pipe Including Gravitty In:Proc. of 12th IHPC. Moscow, 2002. 209-214
  • 7[3]Sameer Khandekar, Xiaoyu Cui, Manfred Groll. Thermal Performance Modeling of Pulsating Heat Pipes by Artifical Neutral Network. In: Proc. of 12th IHPC. Moscow,2002. 215-219
  • 8[4]Wei Qu, Tongze Ma. Experimental Instigation on Flow and Heat Transfer of a Pulsating Heat Pipe. In: Proc. of 12th IHPC. Moscow, 2002. 226-231
  • 9[5]Keiyo G I, fumiaki Sato, Saburo Maezawa. Flow Visualization on Oscillating Heat Pipe, In: Proc. of 11th IHPC.Toke, Japan, 1999. Preprint V.2, 149-153
  • 10[6]Yuan Zhang, Amir Faghri. Heat Transfer in a Pulsating Heat Pipe with Open End. Int. J. of Heat and Masstransfer, 2002, 45: 755-764

共引文献83

同被引文献146

引证文献14

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部