期刊文献+

一种求解时变条件下有宵禁限制最短路的算法 被引量:6

An approach for time-varying shortest path problem with curfews
在线阅读 下载PDF
导出
摘要 在组合优化过程中,往往需要获得从起点到终点之间的最短路.由于道路、天气、交通条件等因素的影响,使得网络具有很强的时变特性.同时,对于网络中的节点往往有宵禁的限制.对时变条件下有宵禁限制并有到达时间限制的最短路进行了研究,建立了软、硬宵禁限制下的数学模型,给出并证明了时变条件下获得有宵禁限制最短路的最优条件,并设计了求解的多项式算法,通过此算法可以获得时变条件下有宵禁限制的最短路.同时,算法和模型还考虑了不同的起点出发时间,使路径决策者可以根据自身的情况,选择合适的出发时间和路径.最后给出了一个应用算例,分析了宵禁对于获得的最短路的影响. Shortest path problem is a basic problem in the combinatorial optimization. In dynamic transportation networks, the arc travel times and costs are time-varying depending on road condition, weather and traffic condition. Moreover, there will be curfews in some nodes in the network because of resting, congestion and so on. The paper developed models for time-varying shortest path problems with both soft and hard curfews. Then, the optimal condition for getting the shortest path with curfews was proved. Based on this condition, the algorithm was proposed. In order to decrease the objective value, the algorithm also considered the multi-departure-time and compared with the value in different departure times. The paper also discussed the complexity of the algorithm. At the end, a case was studied.
作者 魏航
出处 《管理科学学报》 CSSCI 北大核心 2009年第1期9-17,共9页 Journal of Management Sciences in China
基金 国家自然科学基金资助项目(70471039) 教育部新世纪优秀人才支持计划资助项目(NCET-04-0886) 国家教育部"十一五"211工程资助项目
关键词 最短路 时变 宵禁 算法 shortest path time-varying curfews algorithm
  • 相关文献

参考文献18

  • 1Dijkstra E W. A note on two problems in connection with graphs[J]. Numer. Math, 1959, 1: 269-271.
  • 2郭耀煌,钟小鹏.动态车辆路径问题排队模型分析[J].管理科学学报,2006,9(1):33-37. 被引量:25
  • 3Dreyfus S E. An appraisal of some shortest path algorithms[J]. Operations Research, 1969, 17: 395-412.
  • 4Kaufuman D E. Minimum travel time path in dynamic networks with application to intelligent vehicle/highway systems [ J ]. IVHS Journal, 1993, 1 (1) : 1-19.
  • 5Orda A, Rom R. Shortest path and minimum-delay algorithms in networks with time-dependent edge-length [ J ]. J. ACM, 1990, 37 (3) : 607-625.
  • 6Miller-Hooks E, Mahmassani H. Least possible time paths in stochastic, time-varying networks[ J]. Computers and Operations Research, 1998, 25(12) : 1107-1125.
  • 7Miller-Hooks E, Mahmassani H. Path comparisons for a priori and time-adaptive decisions in stochastic, time-varying networks[ J]. European Journal of Operational Research, 2003, 146: 67-82.
  • 8Athanasiso Z, Dimitrios K, Mahmassani H. Design and implementation of parallel time-dependent least time path algorithm for intelligent transportation systems applications[ J]. Transportation Research, Part C, 1997, 5 (2) : 95-107.
  • 9谭国真,高文.时间依赖的网络中最小时间路径算法[J].计算机学报,2002,25(2):165-172. 被引量:90
  • 10谭国真,柳亚玲,高文.随机时间依赖网络的K期望最短路径[J].计算机学报,2003,26(3):323-331. 被引量:13

二级参考文献57

  • 1李引珍,郭耀煌.交通运输网络最短路径关键边问题研究[J].中国管理科学,2004,12(4):69-73. 被引量:28
  • 2毕军,王华东.有害废物运输环境风险研究[J].中国环境科学,1995,15(4):241-246. 被引量:29
  • 3谭国真.最短路径算法设计、分析、实现和实验评价.大连理工大学计算机科学与工程系:技术报告[M].,1999..
  • 4郭耀煌 李军.车辆优化调度[M].成都:成都科技大学出版社,1994.22-48.
  • 5Canen A G,Scott L G.Bridging theory and practice in VRP[J].Journal of the Operational Society,1995,46(1):1-8.
  • 6Psaraftis H.Dynamic vehicle routing:Status and prospects[J].Annals.of Operations Research,1995,61:143-164.
  • 7Bertsimas D J.Ryzin G V.A stochastic and dynamic vehicle routing problem in the euclidean plane[J].Operations Research,1991,39(4):601-615.
  • 8Bertsimas D J,Ryzin G V.Stochastic and dynamic vehicle routing in the euclidean plane with multiple capacitated vehicle[J].Operations Research,1993,41(1):60-76.
  • 9Bertsimas D J,Simchi-Levi D.A new generation of vehicle routing research:Robust algorithms,addressing uncertainty[J].Operations Research,1996,44(2):286-304.
  • 10Dejun H.Dynamic Routing Problem with Service Time Windows.Doctor Dissertation[D].The Hong Kong University of Science and Technology,2000.

共引文献167

同被引文献56

引证文献6

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部