期刊文献+

基于多层采样多阈值的目标分割算法

Object Segmentaion Algorithms Base On and Variable Subsample Variable Thresholding
在线阅读 下载PDF
导出
摘要 文中提出了一种新的阈值化方法用来在自适应背景的应用中把运动物体从景物中分割出来。传统的方法是用一个简单的阈值来分割物体,但是其中存在一个问题就是难以取得一个恰当的阈值在误警率和探测率间取得平衡。文中这种新的方法的提出在减少误警率的同时避免了失检,此方法基于阈值滞后的概念,采用多次子采样在不同的应用层中获取不同的阈值,在不同的应用层中利用不同的分布概率下的阈值来减少误警率和失检率。实验证明该方法较其他方法分割运动物体更为有效。 This paper presents an new method of thresholding for moving object segmentation in adaptive background update application. In traditional ways, a simple threshold is applied to segmentation the moving object fiom the scence, but there is a problem that a proper threshold value faces a trade-off between false alarms and misdetection. In this paper, a new method of thresholding for moving object segmentation is proposed to avoid misdetection while reducing false alarms. This new approach is base on the thresholding with the hysteresis, and adopts the multi-subsampling to achieve difference threshold value in the application. In these application, we utilize the threshold values to reduce false alarms and misdetectoion. The experiment shows that the approach is more effective compared with the other algorithm to segmentation the moving object.
出处 《微计算机信息》 2009年第6期301-302,共2页 Control & Automation
关键词 多阈值 目标分割 子采样 Multi-threshholding Object Segmentaion Subsample
  • 相关文献

参考文献3

二级参考文献16

  • 1刘永信,魏平,侯朝桢.视频图像中运动目标检测的快速方法[J].仪器仪表学报,2002,23(z3):163-166. 被引量:21
  • 2吕俊哲.图像二值化算法研究及其实现[J].科技情报开发与经济,2004,14(12):266-267. 被引量:28
  • 3李卓,郭立红.快速图像处理中阈值选取方法的比较研究[J].微计算机信息,2006(03S):224-225. 被引量:56
  • 4Christopher Richard WREN,All AZARBAYEJANI,Trevor DARRELL,et al.Pfinder:real-time tracking of the human body[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):780-785.
  • 5Chris STAUFFER,W.E.L.GRIMSON.Adaptive background mixture models for real-time tracking[J].Computer Vision and Pattern Recognition, 1999.IEEE Computer Society Conference on,1999,2:245-252.
  • 6Dar-Shyang LEE,Jonathan J.HULL,Berna EROL.A Bayesian framework for Gaussian mixture background modeling [A].Image Processing, 2003.Proceedings.2003 International Conference on,2003,3:973-976.
  • 7Zoran ZIVKOVIC,Ferdinand VAN DER HEIJDEN.Recursive unsupervised learning of finite mixture models[J].IEEE Transactions on pattern analysis and machine intelligence,2004,26(5):651-656.
  • 8Zoran ZIVKOVIC.Improved adaptive Gaussian mixture model for background subtraction[J].Pattern Recognition, 2004.ICPR 2004.Proceedings of the 17th International Conference on,2004,2:28-31.
  • 9Ahmed ELGAMMAL,David HARWOOD,Larry DAVIS.Non-parametric model for background subtraction [A].Proceedings of the 6th European Conference on Computer Vision[C].London, UK:Springer-Verlag,2000.751-767.
  • 10Christof RIDDER,Olaf MUNKELT,Harald KIRCHNER.Adaptive background estimation and foreground detection using Kalman-Filtering [A].Proceedings of the International Conference on recent Advances in Mechatronics[C].Istanbul, Turkey:UNESCO Chair on Mechatronics,1995.193-199.

共引文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部