期刊文献+

关于狭义拟仿紧空间的两个问题 被引量:3

TWO QUESTIONS ON STRONGLYQUASIPARACOMPACT SPACES
在线阅读 下载PDF
导出
摘要 利用狭义拟仿紧空间的等价刻划,给出了一个非狭义拟仿紧的正规弱θ-加细空间,此外还证明了强完备映射的逆保持狭义拟仿紧性.这两个结果分别回答和部份回答了蒋继光提出的两个问题. Strong quasiparacompactness was first introduced by Liu in . It is known that θrefinabilitystrong quasiparacompactness weak θrefinability, and the first implication is not reversible. In , Jiang raised following two questions.Question 1. Does there exist a weak θrefinable, Hausdorff or regular space which is not strongly quasiparacompact?Question 2. Do perfect mappings inversely preserve strong quasiparacompactness?In this paper, we obtain some characterizations of strong quasiparacompactness, and answer Question 1. For Question 2, We give a partial answer. The main results are as follows.Definition 1. A space X is called strongly quasiparacompact if for every open cover U of X there exists a refinement {βn:n<ω0} of U such that βn is a relatively discrete closed collection in X∪i<nβ*i. If also ∪i<nβ*i is closed in X for every n<ω0 then we call X is B(D,ω0)refinable.Definition 2. A space X is called weak θrefinable (boundly weak θrefinable) if for every open cover U of X there exists an open refinement ∪n<ω0Un of U such that the following conditions (1) and (2) ((1) and (2)) hold:(1) for each x∈X, there exists n<ω0, such that 0<ord(x,Un)<ω0(1) there exists k<ω0, such that 0<ord(x,Un)≤k for each x∈X and some n<ω0, where k is called bound.(2) the open cover {U*n:n<ω0} is point finite.Definition 3. A subset F of a space X is called boundly mcompact if for every open collection U of X, where U covers F, there exists a subcollection U of U, such that U covers F and |U|≤m. A closed mapping f:X→Y is called a strongly perfect mapping, if there exists m<ω0 such that for each y∈Y,f-1(y) is a boundly mcompact subset of X.Example. There exists a normal weak θrefinable space, which is not strongly quasiparacompact.Theorem 1. A space X is strongly quasiparacompact if and only if X is B(D,ω0)refinable.Theorem 2. A space X is strongly quasiparacompact if and only if X is boundly weak θrefinable, where the bound is 1.Theorem 3. If f:X→Y is a strong perfect mapping and Y is strongly quasiparacompact, then X is strongly quasiparacompact.
作者 葛英
出处 《南京大学学报(自然科学版)》 CAS CSCD 1998年第1期16-20,共5页 Journal of Nanjing University(Natural Science)
关键词 弱θ-加细 强完备映射 狭义拟仿紧空间 Strongly quasiparacompact weak θrefinable strongly perfect mapping.
  • 相关文献

同被引文献16

  • 1蒋继光,张树果.拟仿紧性与乘积空间[J].数学年刊(A辑),2005,26(6):771-776. 被引量:6
  • 2朱俊.拟仿紧和狭义拟仿紧空间的一些性质[J].数学研究与评论,1984,4(1):9-13.
  • 3赵斌,江守礼.遗传σ-可膨胀与遗传几乎σ-可膨胀空间的逆极限[J].山东大学学报(理学版),2007,42(7):87-90. 被引量:7
  • 4刘应明.一类包含弱仿紧空间和次仿紧空间的拓扑空间[J].数学学报,1977,20:213-214.
  • 5CHIBA K. Normality of inverse limits [ J]. Math Japonica, 1990,35 (5) :959-970.
  • 6CHIBA K. Covering properties of inverse limits [ J]. Question and Answer in General Topology, 2002,20:101-114.
  • 7CHIBA K, YAJIMA Y. Covering properties of inverse limits II [J]. Topology Proceedings, 2003, 27(1) :79-100.
  • 8STONE A H. Inverse limits of compact spaces [J]. General Topology and its Applications, 1979, 10(2) :203-211.
  • 9ENGELKING R. General topology [M]. Berlin: Heldermann Verlag, 1989.
  • 10YASUI Y. Generalized paracompactness [ M ]// MORITA K, NAGATA J. North-Holland: Topics in General Topology, Elsevier Science Publishers, 1989: 161-202.

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部