期刊文献+

以DSD理论和LS方法为基础的程序燃烧法 被引量:4

A program burn method based on detonation shock dynamics and level set(LS) methods
在线阅读 下载PDF
导出
摘要 给出了二维弯曲爆轰波后产物流场计算方法。爆轰波阵面传播规律满足Detonation Shock Dy-namics(DSD)理论并用level set(LS)方法计算,波阵面传播规律与波后流场的耦合通过程序燃烧法实现,反应进程变量可作为LS函数的函数给出。爆轰波从刚性细管道向粗管道传播产生绕射的二维计算结果表明,化学反应速率不影响波后流场分布,只影响反应区结构。此方法可用于钝感炸药的驱动计算问题。 Algorithms for the flow field of detonation products behind 2D curved detonation waves are given. Detonation propagation is described by detonation shock dynamics, and detonation front positions are computed by the LS methods. Detonation propagation and coupling between the detonation front and the flow field of detonation products behind the detonation front are calculated by a program burn method, in which the reaction process variable is defined by the LS functions. Calculated results for 2D detonation wave diffraction from a rigid finer tube to a coarser tube show that chemical reaction rates do not influence the flow field distribution behind the detonation front, only affects the reaction zone structure. The proposed method can deal with the driven problems of insensitive explosives.
出处 《爆炸与冲击》 EI CAS CSCD 北大核心 2008年第5期401-406,共6页 Explosion and Shock Waves
基金 国家自然科学基金项目(10672151) 中国工程物理研究院科学技术发展基金项目(2008B0202011)
关键词 爆炸力学 程序燃烧法 LS方法 非理想爆轰 mechanics of explosion program burn method LS method non-ideal detonation
  • 相关文献

参考文献8

  • 1Bukiet B G. Understanding curved detonation waves[C]//Proceedings of the 10th International Detonation Symposium. Boston, 1993:19-26.
  • 2陈森华,柏劲松,李平.非理想爆轰产物流场的程序燃烧计算法[J].爆炸与冲击,1999,19(1):1-6. 被引量:3
  • 3Bdzil J B, Stewart D S, Jackson T L. Program burn algorithms based on detonation shock dynamies: Discrete approximations of detonation flows with discontinuous front models[J] Journal of Computational Physics, 2001,174 (2) :870-902.
  • 4Aslam T D, Bdzil J B, Stewar D S. Level set methods applied to modeling detonation shock dynamics[J]. Journal of Computational Physics, 1996,126(2) :390-409.
  • 5王春武,赵宁.二维多介质流动问题的界面处理方法[J].南京航空航天大学学报,2005,37(1):114-116. 被引量:4
  • 6陈森华,张旭,柏劲松.贴体坐标系中多维非理想爆轰波阵面传播计算的位标函数法[J].高压物理学报,2000,14(4):280-284. 被引量:9
  • 7Barth T J, Sethian J A. Numerical schemes for the Hamilton-Jacobi and level set equations on triangulated domains [J]. Journal of Computational Physics, 1998,145(1):1-40.
  • 8Adalsteinsson D, Sethian J A. The fast construction of extension velocities in level set methods[J]. Journal of Computational Physics, 1999,148 (1) : 2-22.

二级参考文献9

  • 1[1] Aslam T D,Bdzil J B,Stewart D S.Level S et Methods Applied to Modeling Detonation Shock Dynamics [J]. J Comp Phys,19 96,126:390-409.
  • 2[2] Osher S,Sethian J A.Front Propagating wi th Curvature-Dependent Speed:Algorithms Based on Hamilton-Jacobi Formulations [J]. J Comp Phys,1988,79:12-49.
  • 3Fedkiw R P, Aslam T, Merriman B, et al. A nonoscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost Fluid Method)[J].Comp Phys. 1999,152:457-492.
  • 4Liu T G, Khoo B C, Yeo K S. Ghost fluid method for strong shock impacting on material interface[J]. J Comput Phys, 2003,199 : 651- 681.
  • 5Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes [J]. J Comput Phys, 1996,126:202-228.
  • 6Shu C W, Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes[J]. J Comput Phys,1988,77:439-471.
  • 7Toro E F. Riemann solvers and numerical method for fluid dynamics: a practical introduction [M].Berlin: Springer-Verlag, 1997.
  • 8Ball G J, Howell B P, Leighton T G, et al. Shockinduced collapse of a cylindrical air cavity in water : a free-Lagrange simulation [J]. Shock Waves, 2000,10:265-276.
  • 9孙锦山,理论爆轰物理学,1995年,395页

共引文献13

同被引文献74

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部