期刊文献+

基于改进的PSO进化神经计算进行苹果颜色快速分级 被引量:6

Apple color grading at high speed based on improved PSO evolutionary neural computation
在线阅读 下载PDF
导出
摘要 为克服在苹果颜色分级中存在的速度慢、误差大等缺点,基于再现群智能的粒子群进化算法和神经计算技术,提出了一种新颖、快速的智能分级方法,即首先通过计算机视觉技术获取苹果表面颜色的色度,并提取其特征;然后采用改进的带自适应惯性权值的粒子群优化算法训练神经网络结构,最后用训练好的神经网络进行苹果颜色分级。实际应用表明该方法切实可行且效果显著,不仅分级速度快,而且分级正确率高达98%以上。 In order to eliminate the shortcomings in apple color grading, such as slow speed and high error rate, a novel fast intelligent grading method is presented based on the improved particle swarm optimization (PSO) algorithm with adaptive inertia weight and the neural computation technology. The main process is to acquire the colority of apple surface by computer vision technology and to identifity its features, then train the neural network architectures by improved PSO algorithm, and finally grade the apple color with the trained network. The actual application shows that the method can achieve high precision, and get very fast grading speed. In apple color grading, the application effect is very notable.
出处 《河北农业大学学报》 CAS CSCD 北大核心 2008年第6期109-113,共5页 Journal of Hebei Agricultural University
关键词 粒子群优化算法 自适应惯性权值 神经计算 苹果颜色分级 particle swarm optimization algorithm adaptive inertia weight neural computing apple color grading
  • 相关文献

参考文献8

  • 1Tao Y, Heinemann P H, Varghese Z et al. Machine vision for color inspection of potatoes and apples[J ]. Transaction of the ASAE, 1995, 38(5) :1555 - 1561.
  • 2赵静,何东健.果实形状的计算机识别方法研究[J].农业工程学报,2001,17(2):165-167. 被引量:54
  • 3李庆中,张漫,汪懋华.基于遗传神经网络的苹果颜色实时分级方法[J].中国图象图形学报(A辑),2000,5(9):779-784. 被引量:52
  • 4Kennedy J, Eberhart R C. Particle swarm optimization [C]// Proc. IEEE Int. Conf. Neural Networks. Piscataway, NJ : IEEE Press, 1995 : 1942 - 1948.
  • 5Shi Y, Eberhart R. A modified particle swarm optimizer [ C ]//IEEE World Congress on Computational Intelligence, Anchorage, AK, USA:IEEE Press, 1998: 69 - 73.
  • 6Parsopoulos K E. Stretching Technique for Obtaining Global Minimizes Trough Particle Swarm Optimization [R]//Proc Particle workshop, Indianpolis:Purdue school of Engineering and Technology, INPUI,2001:22 - 29.
  • 7Parsopoulos K E. Vrahatis M N. Partide swarm optimization method for constrained optimization problems[C]//Intelligent Techuologies: from Theory to Applications, Amsterdam: IOS Press, 2002 : 214 - 220.
  • 8Bo liu, Ling Wang. Improved particle swarm optimization combined with chaos [J ]. Chaos, Solitons and Fraetals2005(25):1261- 1271.

二级参考文献15

共引文献98

同被引文献87

引证文献6

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部