期刊文献+

无网格伽辽金法在板弯曲问题中的应用

Application for Board-bending of Element-free Galerkin Method
在线阅读 下载PDF
导出
摘要 无网格伽辽金法采用移动最小二乘近似试函数,形函数一般不具有插值特性,本质边界条件需要特殊处理.本文采用替换式拉格朗日乘子法施加本质边界条件,为提高精度,对修正泛函使用罚函数法再次施加本质边界条件.此方法没有增加未知量的数目,而且刚度矩阵仍具有对称正定带状特点.数值算例表明了该方法的合理性及数值稳定性. In the Element- free Galerkin Method, shape function is constructed by the moving least square approximation. But the essential boundary condition cannot be applied directly because the shape function does not satisfy, the Kronecher- δ condition. The paper employs alternative Lagrange multiplier method to enforce the essential boundary condition, and the penalty function is employed again in order to improve the accuracy. This method does not increase the number of the unknown variables, and the stiffness matrix is still symmetry and stripness. The result shows that this method is reasonable and stable.
机构地区 燕山大学理学院
出处 《佳木斯大学学报(自然科学版)》 CAS 2008年第6期799-801,共3页 Journal of Jiamusi University:Natural Science Edition
关键词 移动最小二乘法 本质边界条件 替换式拉格朗日乘子法 罚函数 moving least - square approximation the essential boundary condition alternative Lagrange multiplier method penalty function
  • 相关文献

参考文献5

  • 1Belytschko T, Lu Y Y,Gu L. Element- Free Galerkin Methods[J]. International Journal for Numercial Methods in Engineerins, 1994,37 (2) :229 - 256.
  • 2王勖成 邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1996..
  • 3Belytschko T, Krongauz Y, Organ D, Fleming M,Kryal P.Meshlees method: An Overview and Recent Developments. Computer Methods in Applied Mechanics and Engineering, 1996.139:3-47.
  • 4Genki Ym,Tomonari F. Recent Developments d Free Mesh Method. International Journal for Numerical Methods in Engineering, 2000, 47:1419 - 1443.
  • 5Nayroles B et al. Generalizing the Finite Element Method: Diffuse Approximation and Diffuse Elements Comput Mech, 1992,10:307- 318.

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部