期刊文献+

基于混合硬化模型的ERW焊管排辊成形数值模拟 被引量:1

Numerical simulation of cage roll forming of ERW pipe based on mixed hardening model
在线阅读 下载PDF
导出
摘要 针对ERW焊管排辊成形过程中带刚反复加载、卸载的复杂成形工艺特点,提出了考虑包辛格效应的混合硬化材料本构模型;通过ABAQUS用户材料子程序VUMAT的二次开发,对混合硬化材料的本构模型进行了有限元程序实现;基于混合硬化模型,对ERW焊管排辊成形过程进行了数值模拟,分析了成形过程中应力应变的变化规律,并对计算结果进行了对比。结果表明,混合硬化模型能够很好地体现ERW焊管排辊成形反复加载、卸载的成形工艺特点;不同的材料硬化模型对排辊成形过程中板料的应力应变产生较大影响。 According to the processing characteristic of ERW cage roll forming a mixed hardening constitutive equation considering bauschinger effect is put forward. A user-defined material routine (VUMAT) of the commercial finite element code ABAQUS/ Explicit is developed, and the mixed hardening constitution model is realized by the finite element method through the VUMAT. Based on the mixed hardening constitutive equation, the numerical simulation of cage roll forming process of ERW pipe is performed. The variation of equivalent stress and strain is analyzed, and the calculated results are also compared. The results shown that the mixed hardening model is suit for the processing characteristic of ERW pipe cage roll forming, and the different material hardening model has important effects on the variation of equivalent stress and strain of strip steel.
出处 《塑性工程学报》 EI CAS CSCD 北大核心 2008年第6期81-86,共6页 Journal of Plasticity Engineering
关键词 混合硬化模型 ERW焊管 排辊成形 包辛格效应 VUMAT mixed hardening model ERW pipe cage roll forming bauschinger effect VUMAT
  • 相关文献

参考文献4

二级参考文献25

  • 1许思广,曹起骧,连家创,姚开云,郭希学.环件轧制的热刚塑性耦合有限元分析[J].机械工程学报,1994,30(2):87-92. 被引量:9
  • 2HARTMANN S, HAUPT P. Stress computation and consistent tangent operator using non-linear kinematic hardening models[J]. Int J Numer Meth Engng,1993,36:3801-3814.
  • 3CHABOCHE J L,CAILLETAUD G.Integration me-thods for complex plastic constitutive equations[J]. Comput Methods Appl Mech Engrg, 1996, 133:125-155.
  • 4FOTIU P A, NEMAT-NASSER S. A universal inte-gration algorithm for rate-dependent elastoplasticity[J]. Comput Struct, 1996, 59(6):1173-1184.
  • 5HARTMANN S, LUHRS G, HAUPT P. An effici-ent stress algorithm with applications in viscoplasti-city and plasticity[J]. Int J Numer Meth Engng,1997, 40: 991-1013.
  • 6SALEEB A F, WILT T E, LI W. An implicit inte- grationscheme for generalized viscoplasticity with dynamic recovery[J]. Comput Mech,1998,21:429-440.
  • 7LUBARDA V A, BENSON D J. On the numerical algorithm for isotropic-kinematic hardening with the Armstrong- Frederick evolution of the back stress[J]. Comput Methods Appl Mech Eng,2002,191(33):3583-3596.
  • 8ARMSTRONG P J,FREDERICK C O.A mathema-tical representation of the multiaxial Bauschinger effect[R]. CEGB Report RD/B/N731, Berkely Nuclear Laboratories, Berkely, UK, 1966.
  • 9KOBAYASHI M, OHNO N. Implementation of cy-clic plasticity models based on a general form of kinematic hardening[J]. Int J Numer Meth Engng,2002, 53:2217-2238.
  • 10OHNO N, WANG J D. Kinematic hardening rules with critical state of dynamic recovery[J]. Int J Plasticity,1993,9:375-401.

共引文献11

同被引文献10

  • 1李宏伟,杨合,郭玲,李兰云,郭良刚.混合硬化弹塑性本构关系及其在环件冷辗扩模拟中的应用[J].机械工程学报,2005,41(7):119-125. 被引量:9
  • 2YAMANAKA K, MORI M, CHIBA A. Mechanical properties of as-forged Ni-free Co-29Cr-6Mo alloys with ultrafine-grained microstructure[J]. Materials Science and Engineering: A, 2011, 528(18): 5961-5966.
  • 3ARMSTRONG P J, FREDERICK C O. A mathematical representation of the multiaxial Bauschinger effect[R]. CEGB Report RD/B/N731, 1996.
  • 4ZAVERL J R, LEE D. A constitutive model of cyclic plasticity[J]. Nuclear Materials, 1978(75): 14-24.
  • 5KHAN A S, ZHANG Haoyue, TAKACS L. Mechanical response and modeling of fully compacted nanocrystalline iron and copper[J]. International Journal of Plasticity, 2000, 16(12): 1459-1476.
  • 6KHANA S, SUH Y S, CHEN X, et al. Nanocrystalline aluminum and iron: Mechanical behavior at quasi-static and high strain rates, and constitutive modeling[J]. International Journal of Plasticity, 2006, 22(2). 195-209.
  • 7GUSES E, SAYED T E. Constitutive modeling of strain rate effects in nanocrystalline and ultrafine grained polycrystals[J]. International Journal of Solids and Structures, 2011, 48(10): 1610-1616.
  • 8WANG Mingliang, SHAN Aidang. Effect of strain rate on the tensile behavior of ultra-fine grained pure aluminum[J]. Journal of Alloys and Compounds, 2008, 455(1-2): 10-14.
  • 9刘晓燕,赵西成,杨西荣,何晓梅.ECAP变形制备超细晶金属材料变形行为的研究进展[J].材料导报,2011,25(9):11-15. 被引量:13
  • 10庄京彪,刘迪辉,李光耀.基于包辛格效应的回弹仿真分析[J].机械工程学报,2013,49(22):84-90. 被引量:19

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部