期刊文献+

一个小波域上各向异性扩散去噪算法 被引量:4

An anisotropic diffusion denoising scheme in wavelet domain
在线阅读 下载PDF
导出
摘要 目的给出一个图像去噪的算法。方法利用小波变换把图像分解为高频子图和低频子图,再根据子图像的特点,采用不同的各向异性扩散方法处理各个子图,最后重构图像。结果各向异性扩散在图像平滑中,不但能够较好地抑制噪声,而且能够很好地保留图像原有的边缘和纹理特征,因而解决了图像去噪时高频部分和低频部分抑制噪声和保留边缘之间的矛盾问题。结论与已有的方法比较,该方法不但能够有效地去除噪声,而且能够保持图像中的细节。 Aim To presenta new model of image denoising.Methods In wavelet domain,according to the characteristics of each sub-image,use different ways of anisotropic diffusion to denoise.Results A new anisotropic diffusion denoising scheme in wavelet domain is given.This scheme combines anisotropic diffusion superiority with multiresolution analysis of wavelet transform.It leads to locally coarse grids in areas of resulting smooth image intensity,while enhanced edges are still resolved on fine grid level.Conclusion Experiments show that the present algorithm is efficient for image denoising and can maintain image detail.
机构地区 西北大学数学系
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第5期689-692,共4页 Journal of Northwest University(Natural Science Edition)
关键词 各向异性扩散 小波变换 偏微分方程 图像去噪 anisotropic diffusion wavelet transform PDE image denoising
  • 相关文献

参考文献11

  • 1WITKIN A P. Scale Space Filtering[ M ]. New York:ACM Inc, 1983 : 1 019-1 023.
  • 2PERONA P, MALIK J. Scale-space and edgs detection using anisotropic diffusion [ J ]. 1EEE Trans Pat Anal Machine Intel, 1990, 12 (7) :629-639.
  • 3CATrE F, LIONS P L, MOREL J M, et al. Image selective smoothing and edge detection by nonlinear diffusion [ J ]. SIAM J Numer Anal, 1992,9 (12) : 182-193.
  • 4WEERATUNGA'S K, KAMATH C. A Comparison of PDE-based Non-linear Anisotropic Diffusion Techniques for Image Denoising[M ]. San Jose: BeUingham,2003.
  • 5RUDIN L I,OSHER S,FATEMI E. Nonlinear total Variation based noise remove algorithms [ J ]. Physica D, 1992, 60:259-268.
  • 6YOU Y L, KAVEH M. Blind image restoration by anisotropic regularization [ J ]. IEEE Trans on Image Processing, 1999,8 (3) :396-407.
  • 7SZIRANYI L, CZDNI I, KOPILOVIC T G, et al. Image Compression by Orthogonal Decomposition and Dynamic Segmentation Using Cellular Nonlinear Network Chips [ M ]. London: Piscataway, 1998 : 307-312.
  • 8MRAZEK P, WEICKERT J, STEID G. Correspondences between wavelet shrinkage and nonlinear diffusion [ M ]. UK Lsle of Skye: Springer, 2003 : 101 - 1 16.
  • 9POLLAK I, WILKSKY A S, HUANG Y. Nonlinear Evolution Equations as Fast and Exact Solvers of Estimation Problems[J]. IEEE Trans on Signal Processing, 2005,53 (2) :484-498.
  • 10吴亚东,孙世新.基于二维小波收缩与非线性扩散的混合图像去噪算法[J].电子学报,2006,34(1):163-166. 被引量:34

二级参考文献16

  • 1汪小帆 戴跃伟.信息隐藏技术[M].北京:机械工业出版社,2001..
  • 2FABIEN A,PETITCOLAS P,J ROSS ANDERSON,et al. Information hiding a surver[J]. Proceedings of the IEEE,1999, 87(7) :1 062-1 078.
  • 3WU Da-chun, WEN-HSIANG TSAI. Embedding of any tupe of data in images based on a human visual model and multiple-based number conversion[J]. Pattern Recognition Lettrs,1999,20(11):1 511-1 517.
  • 4COX I,KILIAN J,LEIGHTON T,et al. Secure spreed spectrum watermarking for multimedia [ J]. IEEE Trans Image Processing, 1997,6(12): 1 673-1 687.
  • 5胡昌华 等.基于MATLAB的系统分析与设计-小波分析[M].西安:西安电子科技大学出版社,2000..
  • 6孙家广 杨长贵.计算机图形学[M].北京:清华大学出版社,1995..
  • 7Donoho D L.Denoising by soft thresholding[J].IEEE Trans Information Theory,1995,41(3):613-627.
  • 8Rudin L,et al.Nonlinear total variation based noise removal algorithms[J].Phys D,1992,60(1-4):259-268.
  • 9Steidl G,Weickert J.Relations between soft wavelet shrinkage and total variation denoising[A].Proceedings of the 24th DAGM Symposium on Pattern Recognition[C].London:Springer Press,2002.198-205.
  • 10Mrazek P,et al.Correspondences between wavelet shrinkage and nonlinear diffusion[A].Scale Space Methods in Computer Vision[C].Berlin:Springer Press,2003.101-116.

共引文献36

同被引文献18

  • 1姜东焕,冯象初,宋国乡.基于非线性小波阈值的各向异性扩散方程[J].电子学报,2006,34(1):170-172. 被引量:15
  • 2VOYATZIS G, NIKOLAIDIS N, PITAS I. Digital Watermarking: an Overview in 9th European Signal Processing Conference[C].9th European Signal Processing. Island of Rhodes, Greece : FRANCE , 1998:9212.
  • 3CHEN G Y, BUI T D. Multiwavelets denoising using neighboring coefficients [J]. IEEE Signal Processing Letters, 2003, 10(7): 211-214.
  • 4PERONA P. MALIK J. Scale-space and edge detection using anisotropic diffusion [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7): 629-639.
  • 5VOCI F, EIHO S, SUGIMOTO N. Estimating the gradient threshold in the Perona-Malic equation [J]. IEEE Signal Processing Magazine, 2004.39-46, 65.
  • 6YOU Y L, KAVEH M. Blind image restoration by anisotropic regularization [J]. IEEE Trans on Image Processing, 1999, 8(30): 396-407.
  • 7SZIRANYI L, CZUNI I, KOPILOVIC T G. Image Cpmpression by Orthogonal Decomposition and dynamic segmentation using cellular nonlinear network chips [M]. London: Piscataway, 1998. 307-312.
  • 8Sapiro G. Geometric Partial Differential Equations and Image Analysis[M]. Cambridge,United Kingdom:Cambridge Univer- sity Press, 2001.
  • 9Sethian J A. Level set methods and fast marching methods: Evolving interfaces in computational geometry,fluid met.hanies, computer vision and materials science[M]. Cambridge,United Kingdom:Cambridge University Press, 1999.
  • 10祝轩,周明全,耿国华,董乐红.一种新的三阶非线性扩散图像平滑方法及其算法实现[J].计算机科学,2007,34(12):227-230. 被引量:5

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部