期刊文献+

一种用于运动目标检测的快速收敛混合高斯模型 被引量:16

A Fast Convergent Gaussian Mixture Model for Moving Object Detection
在线阅读 下载PDF
导出
摘要 背景模型是交通监控视频中检测运动目标的一种常用方法。混合高斯模型在训练背景模型的过程中效果良好,但其收敛速度较慢。目前各种改进模型,只是提高其初始化的收敛速度;为了加快检测过程中背景改变时的收敛速度,必须实时检测背景是否发生改变,若改变,则需要对模型重新进行初始化。基于以上情况,提出了一种改进的混合高斯模型,该模型不需要重新初始化,避免了实时检测背景是否发生改变的多余步骤,实验结果明显著提高了检测过程中的收敛速度。 Background model is a common method for detecting moving object in traffic surveillance video. The effect of Gaussian Mixture Model used in training background model is good, but its convergence velocity is low. At present, many improved models only accelerate the initial convergent velocity. For accelerating the convergent velocity when background changes in the process of surveillance, the models need to detect whether background has changed or not real time and then to be initialized again if background changes. In this paper we put forward a new improved Gaussian Mixture Model, which needn' t be initialized again if background information changes and avoids redundant steps of detecting whether background has changed or not real time. Experiment result of the new model shows the convergent velocity in the process of surveillance is improved evidently.
出处 《中国图象图形学报》 CSCD 北大核心 2008年第11期2139-2143,共5页 Journal of Image and Graphics
基金 国家自然科学基金项目(60273066)
关键词 快速收敛 混合高斯模型 背景模型 目标检测 Fast convergence, gaussian mixture model, background model, object detection
  • 相关文献

参考文献8

  • 1Wren C R, Azarbayejani A, Darrell T, et al. Pfinder: Real-time of the human body[J]. IEEE Transactions on PAMI, 1997, 19(7) : 780 -785.
  • 2Friedman N, Russell S. Image segmentation in video sequences: A probabilistic approach [ A ]. In: Proceedings Thirteenth Conference on Uncertainty in Artificial Intelligence [ C ], Providence, Rhode Island, USA, 1997:175 - 181.
  • 3Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking [ A ] Computer Vision and In: Proceedings of IEEE Pattern Recognition [ C ] Conference on Fort Collins,Colorado, USA, 1999:246-252.
  • 4Stauffer C, Grimson W E L. Learning patterns of activity using realtime tracking[ J]. IEEE Transactions Pattern Analysis and Machine Intelligence, 2000, 22 ( 8 ) :747 - 757.
  • 5Zoran Zivkovic. Improved adaptive Gaussian mixture model for background subtraction [ A ]. In: Proceedings of the International Conference on Pattern Recognition [ C ], Amsterdam, Netherlands, 2004:23 - 26.
  • 6KaewTraKulPong P, Bowden R. An improved adaptive background mixture model for realtime tracking with shadow detection [ A ]. In : Proceedings of 2nd European Workshop on Advanced Video Based Surveillance System (AVBSO1) [ C ], Kingston, UK: Kluwer Academic Publishers, 2001 : 1 - 5.
  • 7Sun Yun-da, Li Ming, Wu Wei, et al. Background model initialization in moving object detection with shadow elimination[ A ]. In: Proceedings of the 7th International Conference on Signal Processing [ C ], Beijing, China, 2004:1288 - 1291.
  • 8王超,侯丽敏.一种新的高斯混合模型参数估计算法[J].上海大学学报(自然科学版),2005,11(5):475-480. 被引量:3

二级参考文献6

  • 1谭铁牛.生物识别研究新进展(一)[M].北京:清华大学出版社,2002.174-177.
  • 2Reynolds Douglas A, Rose Richard C. Robust textindependent speaker identification using Gaussian mixture speaker models [J]. IEEE Transactions on Speech and Audio Processing, 1995, 3(1) :72-83.
  • 3Frederic Jauquet, Patrick Verlinde, Claude Vloeberghs.Histogram classifiers using vocal tract and pitch information for text independent speaker identification [ A ]. Proceedings of the ProRISC Workshop on Circuits, Systems and Signal Processing [ C ]. Utrecht: STW Technology Foundation, 1997.213-217.
  • 4Carlos Alonso Martinez, Marcos Faundez Zanuy. Speaker identification in mismatch training and testing conditions [A]. ICASSP[C]. Istanbul Turkey: IEEE Signal Processing Society, 2000.1 181-1 184.
  • 5Chee-Hung Henry Chu, Edward J Delp. Impulsive noise suppression and background normalization of electrocardiogram signals using morphological operators [ J]. IEEE Transactions on Biomedical Engineering, 1989, 36(2) :262-273.
  • 6Gil J Y, Kimmel R. Efficient dilation, erosion, opening,and closing algorithms [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(12): 1 606-1 617.

共引文献2

同被引文献152

引证文献16

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部