摘要
视岩体为非均质各向异性渗透体,以渗流场中测点水头及流量的计算值与实测值的最佳拟合为准则,把反演岩体渗透系数张量等参数的反问题归结成一个数学优化问题。为了确保反演计算的顺利进行,对极小化目标函数设置惩罚性附加项,在计算机上自动求得岩体工程中三维复杂渗流场反问题的解。最后介绍一个复杂工程实例的求解。
The fractured rock masses are considered as non homogeneous and anisotropic permeable media. The optimal fitting for calculated and measured water level and seepage discharge of measuring points is made. The reverse problem to identify the coefficient tensors of permeability of the rock masses is transformed into an equivalent mathematical minimizing problem. To improve the convergence of iterative calculation, an effective term for penalty is added to the expression of the minimum optimization function. Hereby, the solution to three dimensional complicated reverse problems can directly be obtained on computer. Finally, the solution of a complicated practical example is presented in detail.
出处
《岩石力学与工程学报》
EI
CAS
CSCD
北大核心
1997年第5期461-470,共10页
Chinese Journal of Rock Mechanics and Engineering
基金
国家教委优秀年轻教师基金
水利技术开发基金
关键词
裂隙岩体
渗透系数张量
渗流
反演
fractured rock mass, coefficient tensor of permeability, reverse problem of seepage flow, back analysis, optimization, procedure of nodal virtual flux