期刊文献+

基于小波域CHMT模型的超分辨率图像重建

Super-Resolution Image Reconstruction Based on Wavelet-Domain Classified Hidden Markov Tree Model
在线阅读 下载PDF
导出
摘要 从图像重建的Bayesian方法出发,提出一种基于小波域分类隐马尔可夫树(CHMT)模型的超分辨率图像重建算法。将CHMT模型作为自然图像小波域的先验知识,采用混合高斯模型刻画各子带系数的概率分布,将超分辨率图像重建问题转化为一个约束最优化问题,并采用共轭梯度算法进行求解。同时,提出了自适应的规整化参数选择方法。实验结果表明,该算法具有较低的计算复杂度,在峰值信噪比和视觉效果方面都有所提高。 From the viewpoint of Bayesian method for image reconstruction, a super-resolution algorithm based on the wavelet-domain classified hidden Markov tree (CHMT) model is proposed. The CHMT model is used as a priori information of the image in the wavelet-domain. The distribution densities of the wavelet coefficients probabilities can be approximated by the Gaussian mixture model. And the reconstruction problem is converted to a constrained optimization task, which can be solved by the conjugate gradient method. The method to adaptively determine the regularization parameter is also proposed. Experimental results show that the proposed algorithm has a reasonable computational complexity, and both the PSNR and the subjective visual effect of the reconstructed image are improved.
出处 《数据采集与处理》 CSCD 北大核心 2008年第B09期77-80,共4页 Journal of Data Acquisition and Processing
关键词 超分辨率图像重建 小波域 分类隐马尔可夫树模型 最大后验估计 super-resolution image reconstruction wavelet-domain classified hidden Markov tree model maximum a posteriori estimation
  • 相关文献

参考文献13

  • 1Sung C P, Min K P, Moon G K. Super-resolution image reconstruction: a technical overview [J]. IEEE Signal Processing Magazine, 2003,20(3): 21- 36.
  • 2Schultz R R, Stevenson R L. Extraction of high-resolution frames from video sequences[J].IEEE Transactions on Image Processing, 1996,5 (6) : 996-1011.
  • 3Hardie R C, Barnard K J, Armstrong E E. Joint MAP registration and high-resolution image estimation using a sequence of undersampled images[J].IEEE Transactions on Image Processing, 1997, 6 (12):1621-1633.
  • 4Geman D, Yang C. Nonlinear image recovery with half-quadratic regularization[J].IEEE Transactions on Image Processing, 1995,4(7):932-946.
  • 5Charbonnier P, Blanc-Feraud L, Aubert G, et al. Deterministic edge-preserving regularization in computed imaging[J].IEEE Transactions on Image Processing, 1997,6(2) :298-311.
  • 6Rudin L I, Osher S, Fatimi E. Nonlinear total variation based noise removal algorithms[J].Physcia D, 1992,60 (1-4) : 259-268.
  • 7Beige M, Kilmer M E, Miller E L. Wavelet domain image restoration with adaptive edge-preserving regularlzation[J]. IEEE Transaction on Image Processing, 2000,9(4) :597-608.
  • 8Crouse M S, Nowak R D, Baraniuk R G. Waveletbased statistical signal processing using hidden Markov models [J]. IEEE Transaction on Signal Processing, 1998,46 (4) : 886-902.
  • 9赵书斌,彭思龙.基于小波域HMT模型的图像超分辨率重构[J].计算机辅助设计与图形学学报,2003,15(11):1347-1352. 被引量:21
  • 10Zhu Yaping, Shen Tingzhi, Cui Yu. Wavelet domain image restoration algorithm using classified hidden markov tree model[C]//Proceedings of the 6th World Congress on Intelligent Control and Automation. New York, USA: [s. n.], 2006,2:9570-9573.

二级参考文献17

  • 1Battiato S, Gallo G, Stanco F. A locally-adaptive zooming algorithm for digital images[J]. Image Vision and Computing, 2002, 20(11): 805~812
  • 2Baker S, Kanade T. Limits on super-resolution, how to break them[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(9): 1167~1183
  • 3Baker S, Kanade T. Hallucinating faces[A]. In: Proceedings of the 4th IEEE International Conference on Automatic Face, Gesture Recognition, Grenoble, 2000. 83~89
  • 4Daubechies I. Ten Lectures on Wavelets[M]. Montpelier: Capital City Press, 1992
  • 5Mallat S. A Wavelet Tour of Signal Processing[M]. San Diego: Academic Press, 1998
  • 6Crouse Matthew S, Nowak Robert D, Baraniuk Richard G. Wavelet-based statistical signal processing using hidden Markov models[J]. IEEE Transactions on Signal Processing, 1998, 46(4): 886~902
  • 7Romberg Justin K, Choi Hyeokho, Baraniuk Richard G. Bayesian tree-structured image modeling using wavelet-domain hidden Markov models[J]. IEEE Transactions on Image Processing, 2001, 10(7): 1056~1068
  • 8Coifman R R, Donoho D L. Translation-invariant de-noising[R]. San Francisco: Stanford University, 1995
  • 9Schultz Richard R, Stevenson Robert L. A Bayesian approach to image expansion for improved definition[J]. IEEE Transactions on Image Processing, 1994, 3(5): 233~242
  • 10Schultz R R, Stevenson R L. Extraction of high-resolution frames from video sequences[J]. IEEE Transactions on Image Processing, 1996, 5(6): 996~1011

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部