期刊文献+

基于样条变换的非线性PLSR方法及应用 被引量:2

Nonlinear PLSR method and its application based on spline transform
在线阅读 下载PDF
导出
摘要 针对样本数据多呈现非线性和小样本的特点,为提高此类样本数据回归预测的有效性和精度,根据偏最小二乘回归(PLSR)方法原理、样条插值原理和拟线性化思想,提出基于三次B样条变换的非线性PLSR模型及其实现方法。分析了进行有效变换和成分提取的条件,给出了应用该方法的具体步骤。最后通过对非线性函数回归预测仿真和军用运输机采购价格回归预测实例,以及与BP神经网络模型结果的比较,表明了该方法的有效性和实用性。 Sample data are usually small quantity and nonlinearity. In order to enhance the precision and validity of regression and forecast about such sample data, the nonlinear PLSR model and its implementation based on cubic B-spline transform are proposed, according to the theory of partial least-square regression(PLSR), spline interpolation theory and linearization idea. The conditions of effective transform and component computering are analysed, and the detailed steps of the method are given. Finally, the method is applied to nonlinear function regression simulation and military aircraft acquisition cost instance, and is compared with neural networks. Results show the validity and practicability of the proposed method.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2008年第10期1999-2002,2006,共5页 Systems Engineering and Electronics
关键词 数据挖掘 偏最小二乘 非线性回归 样条变换 军用飞机 data mining partial least-squares nonlinear regression spline transform military aircraft
  • 相关文献

参考文献6

  • 1Wold S, Sjostrom M, Eriksson. PLS regression: a basic tool of chemometrics[J]. Chem-mom Letrics and Intelligent Laboratory Systems ,2001(58) : 109 - 130.
  • 2张军平,王珏.主曲线研究综述[J].计算机学报,2003,26(2):129-146. 被引量:62
  • 3李寿安,张恒喜,李东霞,郭风,王礼沅.基于偏最小二乘回归的军用飞机采购价格预测[J].海军工程大学学报,2005,17(4):64-68. 被引量:10
  • 4王珏,石纯一.机器学习研究[J].广西师范大学学报(自然科学版),2003,21(2):1-15. 被引量:78
  • 5Bang Y H, Yoo C K, Lee I B. Nonlinear PLS modeling with fuzzy inference system[J]. Hemometrics and Intelligent Laboratory Systems ,2003(64) : 137 - 155.
  • 6Durand J F. Local polynomial additive regression through PLS: PLSS[J]. Chemometrics and Intelligent Laboratory Systems, 2001(58) :235 - 246.

二级参考文献91

  • 1张晓东,张洪滨,吕建伟.武器系统采购费与维修费权衡的依据分析[J].海军工程大学学报,2005,17(3):107-111. 被引量:4
  • 2WienerN.控制论(中译本)[M].北京:科学出版社,1962..
  • 3Yao Y,Lin T. Generalization of rough sets using model logics[J]. Intelligent Automation and Soft Computing, 1996,2(2):103-120.
  • 4Skowron A,Rauszer C. The discernibility matrices and functions in information systems [A]. Slowinski R. Ifitelligent decision support-handbook of applications and advances of the rough sets theory[C]. Dordrecht :Kluwer Academic Publishers, 1992. 331-362.
  • 5Han J,Kamber M. Data mining:Concepts and techniques [M]. San Mateo :Morgan Kaufmann Publishers, 2000.
  • 6Zhou Yu-jian,Wang Jue. Rule + exception modeling based on rough set theory[A]. Polkowski L,Skowron A. Rough sets and current trends in computing[C]. Berlin :Springer, 1998. 529-536.
  • 7Kaelbling L,Littman M ,Moore A. Reinforcement learning :A survey[J]. Journal of Artificail Intelligence Research,1996,4:237-285.
  • 8Arbib M. Brains machines and mathematics[M]. New York :McGraw Hill companies, 1964.
  • 9Ashby W. Design for a brain the origin of adaptive behavior[M]. London :Chapman & Hall, 1950.
  • 10Holland J. Adaptation in natural and artificial systems[M]. Ann Arbor:University of Michigan Press ,1975.

共引文献147

同被引文献18

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部