摘要
研究流体饱和多孔隙介质中波动方程的数值模拟.针对求解二维弹性波方程问题,提出小波有限差分法.该方法综合了小波多分辨分析计算灵活、计算效率高特性和有限差分易于实现的优点.数值模拟的结果显示,此方法对于求解流体饱和多孔隙介质方程的数值模拟是有效稳定的.
The numerical simulation of wave propagation in fluid-saturated porous media is considered. A wavelet finite-difference method was proposed for solving the 2-D elastic wave equation. This algorithm combines the flexibility and computational efficiency of wavelet multiresolution method with the easy implementation of finite-difference method. And the orthogonal wavelet basis provides a natural framework, which adapts spatial grids to local wavefield properties. Numerical results illustrate the value of the approach as an accurate and stable tool for the simulation of wave propagation in fluid-saturated porous media.
出处
《应用数学和力学》
CSCD
北大核心
2008年第11期1355-1364,共10页
Applied Mathematics and Mechanics
基金
国家自然科学基金资助项目(40774056)
关键词
小波多分辨分析
数值模拟
双相介质
有限差分法
wavelet multiresolution method
numerical simulation
fluid-saturated porous medium
finite-difference method