期刊文献+

流体饱和多孔隙介质波动方程小波有限差分法 被引量:6

Wavelet Finite-Difference Method for the Numerical Simulation of Wave Propagation in Fluid-Saturated Porous Media
在线阅读 下载PDF
导出
摘要 研究流体饱和多孔隙介质中波动方程的数值模拟.针对求解二维弹性波方程问题,提出小波有限差分法.该方法综合了小波多分辨分析计算灵活、计算效率高特性和有限差分易于实现的优点.数值模拟的结果显示,此方法对于求解流体饱和多孔隙介质方程的数值模拟是有效稳定的. The numerical simulation of wave propagation in fluid-saturated porous media is considered. A wavelet finite-difference method was proposed for solving the 2-D elastic wave equation. This algorithm combines the flexibility and computational efficiency of wavelet multiresolution method with the easy implementation of finite-difference method. And the orthogonal wavelet basis provides a natural framework, which adapts spatial grids to local wavefield properties. Numerical results illustrate the value of the approach as an accurate and stable tool for the simulation of wave propagation in fluid-saturated porous media.
作者 贺英 韩波
出处 《应用数学和力学》 CSCD 北大核心 2008年第11期1355-1364,共10页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(40774056)
关键词 小波多分辨分析 数值模拟 双相介质 有限差分法 wavelet multiresolution method numerical simulation fluid-saturated porous medium finite-difference method
  • 相关文献

参考文献17

  • 1Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid: low-frequency range[J]. Acoustical Society of America, 1956,28(2): 168-178.
  • 2Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid: higher-frequency range[J]. Acoustical Society of America, 1956,28(2) : 168-178.
  • 3Dai N, Vafidis A. Kanasewich E R. Wave propagation in heterogeneous, porous media: A velocity-stress, finite-difference method[J]. Geophysics, 1995,60(2) : 327-340.
  • 4Prevost J H. Wave propagation in fluid-saturated porous media: an efficient finite element procedure [J]. Soil Dynamics and Earthquake Engineering, 1985,4(4) : 183-202.
  • 5Namsimhan T N, Witherspoon P A. An integrated finite difference method for analyzing fluid flow in porous media[J]. Water Resources Research, 1976,12( 1 ) :57-64.
  • 6Pedercini M. Patera A T, Cruz M E. Variational bound finite element methods for three-dimensional creeping porous media and sedimentation flows[J]. International Journal for Numerical Methods in Fluids, 1998,26(2) : 145-175.
  • 7邵秀民,蓝志凌.流体饱和多孔介质波动方程的有限元解法[J].地球物理学报,2000,43(2):264-278. 被引量:28
  • 8SunWeitao,YangHuizhu.ELASTIC WAVEFIELD CALCULATION FOR HETEROGENEOUS ANISOTROPIC POROUS MEDIA USING THE 3-D IRREGULAR-GRID FINITE-DIFFERENCE[J].Acta Mechanica Solida Sinica,2003,16(4):283-299. 被引量:2
  • 9Hong T K, Kennett B L N. A wavelet-based method for simulation of two-dimensional elastic wave propagation [J]. Geophysical Journal International, 2002,150 ( 3 ) : 610-638.
  • 10Mustafa M T, Siddiqui A A. Wavelet opthmized finite difference method with non-static regridding [J]. Applied Mathematics and Computations, 2007,18( 6 ) :203-211.

二级参考文献19

  • 1邵秀民,蓝志凌.各向异性弹性介质中波动方程的吸收边界条件[J].地球物理学报,1995,38(A01):56-73. 被引量:17
  • 2Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid: Low-frequency range. J. Acoust. Soc. Amer. , 1956,28:168 ~ 178
  • 3Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid: Higher-frequency range. J. Acoust. Soc. Amer. ,1956, 28:179~ 191
  • 4Plona T J. Observation of a second Bulk compressional wave in porous media at ultrasonic frequences. Appl. Phys., 1980,36:259~ 261
  • 5AmosNur 许云译.双相介质中波的传播[M].北京:石油工业出版社,1986..
  • 6de Boer R, Ehlers R, Liu Z. One-dimensional transient wave propagation in fluid-saturated incompressible porous media. Arch.Appl. Mech. , 1993,63:59~ 72
  • 7Dominguez J. An integral formulation for dynamic poroelasticity. J.Appl. Mech. ASME, 1991,58(3): 588 ~ 590
  • 8Yazdchi M, Khalili N, Vallippan S. Non-linear seismic behavior of concrete gravity dams using coupled finite element-boundary element method. International Journal for Numerical Methods in Engineering,1999, 44:101 ~ 130
  • 9Khalili N, Yazdchi M, Valliappan S. Wave propagation analysis of two-phase saturated porous media using coupled finite-infinite element method. Soil Dynamics and Earthquake Engineering, 1999, 18: 533~ 553
  • 10Ma Junxing, Xue Jijun. A study of the construction and application of a Danbechies wavelet-based beam element. Finite Element in Analysis and Design, 2003, 39: 965 ~ 975

共引文献51

同被引文献51

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部