期刊文献+

基于模糊多类SVM的图像检索相关反馈 被引量:3

Relevance Feedback of Image Retrieval Based on Multi-Class Fuzzy Support Vector Machines
在线阅读 下载PDF
导出
摘要 针对反馈固有的正负样本不对称问题和小样本问题,提出一种基于修正模糊多类SVM(FSVMs)的图像检索相关反馈算法.该算法首先将相关反馈看成一个正样本类和多个负样本类间的多分类问题,并针对原始FSVMs中模糊隶属度存在负值的情况进行了修正;然后,将受限随机选择扩展为多类情况来扩充多类负样本,并以记忆标注的方式降低用户多类标注的疲劳和误差.实验结果表明,该方法能在较少的反馈次数内得到较满意的检索结果. In order to overcome the inherent asymmetry and the small sample size of relevance feedback ( RF), a RF algorithm of image retrieval is proposed based on the modified multi-class fuzzy support vector machines ( FSVMs). In this algorithm, the RF is considered as a multi-class classification problem between one relevance class and several irrelevance classes, and the original membership function of FSVMs is modified to avoid negative values. Moreover, the conventional constrained random selection method is extended to a multi-class case, and a memory marking method is used to lighten the burden of multi-class marking and to decrease the classification error. Experimental results demonstrate that the proposed algorithm helps to obtain satisfying retrieval results with less feedback times.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第9期107-112,共6页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60772122) 安徽省教育厅自然科学重点基金资助项目(KJ2007A045 KJ2008A033)
关键词 模糊多类SVM 多类受限随机选择 记忆性标注 图像检索 相关反馈 multi-class fuzzy support vector machine multi-class constrained random selection memory marking image retrieval relevance feedback
  • 相关文献

参考文献15

  • 1周建新,高科,李锦涛,张勇东,唐胜.图像检索中一种有效的SVM相关反馈算法[J].计算机辅助设计与图形学学报,2007,19(4):535-540. 被引量:10
  • 2Zhou X S, Huang T S. Relevance feedback in image retrieval : a comprehensive review [ J ]. Multimedia Systems Journal ,2003,8(6) :536-544.
  • 3Peng J, Bhanu B, Qing S. Probabilistic feature relevance learning for content-based image retrieval [ J ]. Computer Vision and Image Understanding, 1999,75 ( 1/2 ) : 150- 164.
  • 4Rui Y, Huang T S. Optimizing learning in image retrieval [ C ] //Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island:IEEE, 2000:236-243.
  • 5余正涛,樊孝忠,郭剑毅.基于支持向量机的汉语问句分类[J].华南理工大学学报(自然科学版),2005,33(9):25-29. 被引量:20
  • 6Hong P, Tian Q, Huang T S. Incorporate support vector machine to content-based image retrieval with relevance feedback [ C ]//Proceedings of International Conference on Image Processing. Vancouver:IEEE,2000:750-753.
  • 7Tao Da-cheng, Tang Xiao-ou. Random sampling based SVM for relevance feedback image retrieval [ C ]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Hawaii:IEEE, 2001 : II-647- II-652.
  • 8Inoue T, Abe S. Fuzzy support vector machines for pattern classification [ C ] //Proceedings of International Joint Conference on Neural Networks. Washington: IEEE, 2001 : 1449-1454.
  • 9Chang Chih-Chung,Lin Chih-Jen. LIBSVM:a library for support vector machines [ CP/OL]. 2006-07-12. http ://www. csie. ntu. edu. tw/- cjlin/libsvm/.
  • 10Abe Shigeo, Inoue Takuya. Fuzzy support vector machines for muhiclass problems [ C ] //Proceedings of the 10th European Symposium on Artificial Neural Networks. Bruges : D-Facto Public ,2002 : 113-118.

二级参考文献27

  • 1郑实福.[D].哈尔滨:哈尔滨工业大学计算机科学与工程系,2002.
  • 2Li Xin, Roth Dan. Learning question classifier [A]. Proceedings of the 19th International Conference on Computational Linguistics [C]. Taipei: Morgan Kaufmann Publishers ,2002.556 - 562.
  • 3Li Xin, Roth Dan, Small Kevin. The role of semantic information in learning question classifiers [A]. Proceedings of the 1st International Joint Conference on Natural Language Processing [C]. Berlin: Spring-Verlag,2004.451 -458.
  • 4Zhang Dell, Lee Wee Sun. Question classification using support vector machines [A]. Proceedings of the 26th annual international ACM SIGIR Conference on Research and Development in Informaion Retrieval [C]. New York: ACM Press ,2003.26 - 32.
  • 5Hacioglu Kadri, Ward Wayne. Question classification using support vector machines and error correcting code[A]. Proceedings of HLT-NACCL 2003 [C]. Edmonton,2003.28 - 30.
  • 6Roth Dan, Cumby Chad, Li Xin, et al. Question-answering via enhanced understanding of questions [A]. Proceedings of the 1 1th Text Retrieval Conference [C]. Gait hersburg: NIST Special Publication, 2002. 667 - 676.
  • 7Hermjakob U. Parsing and question classification for question answering [A]. ACL-2001 Workshop on Open-Domain Question Answering [C]. Toulouse, 2001. 255 -262.
  • 8Taira Jun Suzuki, Sasaki Yutaka, Maeda Eisaku. Question classification using HDAG kernel [A]. ACL Workshop on Mulitilingual Summarization and Question Answering [C]. Sapporo,2003.61 - 68.
  • 9Hsu C W, Lin C J. A comparison of methodes for multiclass support vector machines [J]. IEEE Transacatuions on Netural networks,2002,13 (23) :415 - 425.
  • 10Chang Chih-chung, Lin Chih-jen. LIBSVM: A library for support vector machines [EB/OL]. http :∥www. csie. ntu.edu. tw/~ cjlin/libsvm,2001 - 05 - 15/2003 - 10 - 25.

共引文献27

同被引文献37

  • 1鲁珂,赵继东,吴跃,何晓飞.基于保局投影的相关反馈算法[J].计算机辅助设计与图形学学报,2007,19(1):20-24. 被引量:8
  • 2Liu Ying,Zhang Deng-sheng,Lu Guo-jun,et al.A survey of content-based image retrieval with high-level semantics[J].Pattern Recognition,2007,40(1):262-282.
  • 3Zhang L,Lin F,Zhang B.Support vector machine learning for image retrieval[C]∥Proceedings of the 2001 International Conference on Image Processing.Thessaloniki:IEEE,2001:721-724.
  • 4Philbin J,Chum O,Isard M,et al.Object retrieval with large vocabularies and fast spatial Image matching[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Minneapolis:IEEE,2007:1-8.
  • 5Chen Yi-xin,Bi Jin-bo,James Z W.MILES:multiple-instance learning via embedded instance selection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(12):1931-1947.
  • 6Shi J,Malik J.Normalized cuts and image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):888-905.
  • 7Chen Yi-xin,James Z W.Image categorization by learning and reasoning with regions[J].Journal of Machine Learning Research,2004,5(8):913-939.
  • 8Hu Qing-hua,Xie Zong-xia,Yu Da-ren.Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation[J].Pattern Recognition,2007,40(12):3509-3521.
  • 9He X F,Ma W Y,Zhang H J.Learning an image manifold for retrieval[C] //Proceedings of 12th ACM International Conference on Multimedia.New York:ACM Press,2004:17-23.
  • 10Huang H,Li J W,Feng H L.Subspaces versus submanifolds:a comparative study in small sample size problem[J].International Journal of Pattern Recognition and Artificial Intelligence,2009,23 (3):463-490.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部