期刊文献+

基于用户模型的个性化信息检索研究 被引量:4

The Personalized Information Retrieval on the Basis of User-mode
在线阅读 下载PDF
导出
摘要 随着Internet的广泛应用,越来越多的信息以电子化方式存放在网上,但是信息获取手段的提高并没有满足信息增长的需要,导致了"信息过载"和"资源迷向"现象。虽然有许多信息检索和过滤工具被开发出来,然而,传统的搜索引擎信息服务系统没有有效的手段理解用户准确的信息需求,缺乏智能和个性。针对利用现有的搜索引擎进行信息检索的过程中存在的查准率低和用户无法跟踪网页信息变化的缺点,提出面向用户的个性化信息检索服务理念,在客户端建立基于关键词表的用户个性化信息检索模型,通过用户个性化信息检索模型内部各功能模块之间的通信协作达到面向用户的个性化主动信息检索服务。 With the Broad application of Internet,more and more information is left on Internet as an Electronic resource, while the means of information acquisition is faraway from the demand of information increase, thus"Rich data" and"Poor information" happened. Although many tools for information retrieval and information filtering have been developed, they are short of Personalization and intelligence, and cannot capture user's information demand exactly. In view of the situation that existing search engines cannot follow up the change of web Page and their low Precision in information retrieval, the dissertation suggests An idea of Personalized information retrieval service,and establish a user model for Personalized information retrieval based on user Partialness keyword list on client server, which can Supply Personalized information retrieval service for user With the communications and collaboration of all modules of it.
出处 《计算技术与自动化》 2008年第3期120-124,共5页 Computing Technology and Automation
关键词 用户模型 关键词表 分类字典 个性化信息服务 usermode keywordList classified - dictionary personalized
  • 相关文献

参考文献7

二级参考文献21

  • 1Badrul M. Sarwar, Joseph A. Konstan, A1 Borchers, Jon Herlocker, Brad Miller, John Riedl, Using Filtering Agents to Improve Prediction Quality in the GroupLens Research Collaborative Filtering System, Proceedings of the ACM 1998 conference on Computer supported cooperative work Seattle, Washington, United States, 1998: 345~354.
  • 2Jonathal L. Herlocker, Joseph A. Konstan, Al Borchers,John Riedl. An algorithmic framework for performing collaborative filtering. Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, U.S. 1999: 230~237.
  • 3Collaborative Filtering. http:∥pespmcl.vub.ac.be/COLLFIT.htm
  • 4ZAN HUANG, HSINCHUN CHEN, and DANIEL ZENG,Applying Associative Retrieval Techniques to Alleviate the Sparsity Problem in Collaborative Filtering, ACM, VOL22,No. 1, January 2004:116~142
  • 5Badrul Sarwar, George Karypis, Joseph Konstan, John Reidl, Item-Based Collaborative Filtering Recommendation Algorithms[J], Proceedings of the tenth international conference on World Wide Web, ACM Press,Hong Kong:2001: 285~295.
  • 6路海明,卢增祥,徐晋晖,李衍达.基于Agent技术的个性化主动信息服务[J].计算机工程与应用,1999,35(6):12-15. 被引量:31
  • 7董红斌,王建华.多Agent技术研究[J].计算机应用研究,1999,16(10):29-30. 被引量:32
  • 8汪晓岩,胡庆生,李斌,庄镇泉.面向Internet的个性化智能信息检索[J].计算机研究与发展,1999,36(9):1039-1046. 被引量:81
  • 9董红斌,石纯一.移动Agent技术研究[J].计算机科学,2000,27(4):58-61. 被引量:41
  • 10陈欣,王炜,吴玲达,胡晓峰.基于Agent模型的开放超媒体个性化[J].计算机工程与应用,2000,36(7):37-40. 被引量:4

共引文献66

同被引文献31

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部