期刊文献+

模拟降雨条件下径流系数预测模型的构建 被引量:4

Development of runoff coefficient forecast model under simulated rainfall
在线阅读 下载PDF
导出
摘要 多种下垫面类型的出现,使得城市地区径流系数的变化日趋复杂.本文通过模拟降雨实验,分析了降雨强度等因素对径流系数变化的影响,运用LM-BP算法的神经网络模型,采用S型/S型模型结构,针对不同降雨条件下每种下垫面的径流系数进行了数学模拟,并与其他方法的模拟结果进行了比较.结果表明,该模型预测结果准确性较高.最后,以某办公楼为例采用该模型进行了产流量预测,验证了该模型的实用性. The runoff coefficient change in time and space has become more and more complex because of the diversification of the underlying surface of the city. On the basis of experiments, the law of rainfall coefficient changed by a single factor is analyzed, the S/S mathematial model of relationship of different underling surfaces and influence factors is developed based on LM calculation method. The runoff coefficients of every underlying surface are forecasted in different rainfall conditions by using ANN models and comparison with other methods. The results show that the model is of high forecast precision. The runoff-producing amount in an office building is forecasted by using the model. A case study shows that the rain water resource has the value of reusing.
出处 《水利水运工程学报》 CSCD 北大核心 2008年第3期35-39,共5页 Hydro-Science and Engineering
基金 国家自然科学基金资助项目(编号40271022,50279041) 国家“863”计划研究资助项目(编号2005AA113150)
关键词 神经网络 径流系数 降雨强度 雨水利用 neural network runoff coefficient rainfall intensity rainwater utilization
  • 相关文献

参考文献15

  • 1白清俊,董树亭,范世香,任淑霞.小流域集水效率的径流系数算法[J].山东农业大学学报(自然科学版),2004,35(3):379-382. 被引量:5
  • 2陈建刚,张书函,丁跃元,赵飞,冒建华.基于雨洪利用的不同下垫面降雨产流规律研究[J].水利水电技术,2007,38(11):87-91. 被引量:4
  • 3US Environmental Protection Agency. Results of the Nationawide Urban Runoff Program [ S/CD ]. Washington: NTIS Access No. PB84 - 18552, 1983.
  • 4Urban Drainage and Flood Control District, Urban storm drainage criteria manual[ K]. Denver: Colo, 1991.
  • 5Sehaake J C, Geyer J C, Knapp J W. Experimental examination of the rational method [ J]. Journal of the Hydraulic Division, ASCE, 1967, 93(6): 353-370.
  • 6Gianfranco Becciu, Alessandro Paoletti. Moments of runoff coefficient and peak discharge estimation in urban catchments[ J]. Hydrologic Engrg, 2000, (5) : 197 -205.
  • 7Piero Barazzuoli, Senatro Izzo. A new practical aid to regional hydrogeologic planning: The runoff coefficient map [ J ]. Environmental Management, 1989, 13 ( 5 ) : 613 - 622.
  • 8李兴旺,董曼玲.地面水质评价的RBF神经网络方法[J].水土保持通报,2002,22(3):51-54. 被引量:7
  • 9朱星明,卢长娜,王如云,白婧怡.基于人工神经网络的洪水水位预报模型[J].水利学报,2005,36(7):806-811. 被引量:50
  • 10Rumenlhart D E, Hinton G E, Williams R J. Learning representation by back propagation errors [ J]. Nature, 1986, 3 (6) : 899 - 905.

二级参考文献34

  • 1吴钦孝,刘向东,赵鸿雁,汪有科,韩冰.森林集水区水文效应的研究[J].人民黄河,1994,17(12):25-27. 被引量:10
  • 2叶镇,刘鑫华,胡大明,吴畏.区域综合径流系数的计算及其结果评价[J].中国市政工程,1994(4):43-45. 被引量:30
  • 3尚金成,刘鑫卿,张勇传,刘育琪,杜江.基于多层神经元网络的随机自适应径流预报模型[J].水电能源科学,1995,13(1):52-56. 被引量:15
  • 4张兵.[D].镇江:江苏大学,2003.
  • 5张恭肃 朱星明.洪水预报调度自动化系统[J].水文,1988,(5):1-6.
  • 6Yu Paoshan, Cehn Chiajung, Chen Shiannjong, Lin Shuchen. Application of grey model to ward runoff forecasting [ J ].Journal of The American Water Resources Association,2001,37( 1 ):151 - 166.
  • 7长办水文局汇编.水文预报论文选集[M].北京:水利电力出版社,1985..
  • 8Raman H, Sunikuma N. Multivariate modeling of water resources time series using ar6ficial neural networks [ J ].Hydrological Sciences Journal, 1995,40(2):145- 163.
  • 9Minns A W, Hall M J, Artificial neural networks as rainfall-runoff models[J]. Hydrological Science Journal, 1996,41 (3):399 - 417.
  • 10Bonaffe A, Galeati G, Sforna M. Neural networks for daily mean flow forecasting. In: Blain W R, Katsifarakis K Led. Water Resources and Distribution[ J ]. hydraulic Eng Software V, UK : Southamptom, 1994,1 : 131 - 138.

共引文献113

同被引文献50

引证文献4

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部