期刊文献+

Blob分析中基于游程链的连通区域标记 被引量:21

Run-List Based Connected Components Labeling for Blob Analysis
在线阅读 下载PDF
导出
摘要 Blob分析是机器视觉系统中的一个重要组成部分,为满足工业应用的实时性要求需研究快速高效标记算法.该文提出一种基于游程链的快速Blob分析法,使用游程链表和动态数组,建立相邻两行游程信息的动态链表,通过分析游程节点间连通性标记游程节点.该方法只需扫描图像一次,并且无需建立等价表和进行等价标记合并,克服了现有算法中的标记冗余,另外还能标记连通区域中的内洞.实验结果表明该方法对于任意复杂形状、任意数目的Blob区域都能正确检测并计算参数,并且具有很快的速度和很好的稳定性.该方法已成功应用到印刷缺陷在线检测系统中. Blob analysis is an important part of machine vision system. Fast and efficient Blob analysis is needed to meet real-time demands in industrial applications. This paper presents a fast Blob analysis algorithm based on runlist. The algorithm uses the method of run-lists and dynamic array to build dynamic chain tables for storing two neighbor rows run-coding information. The run list node can be labeled by analyzing its connectivity. This algorithm requires only a single pass over the image, without the need to build an equivalence table and to unite equivalent labels. It can avoid label redundancies present in conventional algorithms. In addition, it can also label holes in blobs. Experimental results show that it can correctly label any Blob regions with complicated shapes and random numbers, and compute blobs features. With faster speed and good stability, the proposed labeling algorithm has been successfully applied in an on-line defect detection system for printed matter.
作者 张二虎 冯江
出处 《应用科学学报》 CAS CSCD 北大核心 2008年第5期536-540,共5页 Journal of Applied Sciences
基金 陕西省自然科学基金(No.2006F26) 陕西省教育厅自然科学研究计划(No.07JK356)资助项目
关键词 BLOB分析 连通区域标记 游程链表 动态数组 Blob analysis, conneeted component labeling, run-lists, dynamic array
  • 相关文献

参考文献12

  • 1MESSOM C H, DEMIDENKO S, SUBRAMANJAM K. Size posion identification in real-time image processing using run length encoding [ C ]// Instrumentation and Measurement Technology Conference ( IMTC ) 2002, Anchorage, Reading, 2002:1055 -1060.
  • 2GUPTA G S, WIN T A, MESSOM C, DEMIDENKO S, MUKHOPADHYAY S. Defect analysis of grit-blasted or spray-painted surface using vision sensing techniques [ C ]// Image and Vision Computing, New Zealand, 2003 : 18 - 23.
  • 3CARMONA E J, MARTUNEZ-CANTOS J, MIRA J. A new video segmentation method of moving objects based blob- level knowledge[J]. Pattern Recognition Letters,2008,29 (3) : 272 - 285.
  • 4TSAI Duming, HUANG Tseyun. Automated surface inspection for statistical textures [ J ]. Image and Vision Computing, 2003, 21(4): 307-323.
  • 5Hu Qingmao, QIAN Guoyu, WIESLAW L N. Fast connected-component labelling in three-dimensional binary images based on iterative recursion [ J ]. Computer Vision and Image Understanding, 2005, 99 (3) :414 - 434.
  • 6DILLENCOURT M B, SAMET H, TAMMINEN M. A general approach to connected-component labeling for arbitrary image representations [J]. Journal of the Association for Computing Machinery(ACM), 1992, 39(2) : 253 -280.
  • 7MANOHAR M, RAMAPRIYAN H K. Connected component labeling of binary images on a mesh connected massively parallel processor [ J ]. Computer Vision, Graphic and Image Processing, 1989,45(2): 133-149.
  • 8SUZUKI K, HORIBA I, SUGIE N. Linear-time connected- component labeling based on sequential local operations [J]. Computer Vision and Image Understanding, 2003, 89(1) : 1 -23.
  • 9ZENZO S D, CINQUE L, LEVIALDI S. Run-based algorithms for binary image analysis and processing [ J ]. IEEE Transactions on Pattern Analysis and Processing , 1996, 18(1): 83-89.
  • 10徐利华,陈早生.二值图像中的游程编码区域标记[J].光电工程,2004,31(6):63-65. 被引量:31

二级参考文献5

  • 1[1]CASTLMAN K R. Digital Image Processing [M].北京:清华大学出版社,1998.480-481.
  • 2[2]SONKA M, HLAVAC V, BOYLE R. Image Processing Analysis and Machine Vision 2 ed [M].北京:人民邮电出版社,2002. 232 - 236.
  • 3[3]PRATT W K. Digital Image Processing: PIKS Inside, 3 ed.[M]. New York: John Wiley & Sons, Inc, 2001. 581 - 583.
  • 4[4]FREEMAN H. Boundary Encoding and Processing [A]. Picture Processing and Psychopictorics[C], New York: Academic Press, 1970. 241-266.
  • 5周冠雄,计算机学报,1986年,9卷,6期,441页

共引文献52

同被引文献149

引证文献21

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部