期刊文献+

BP神经网络在织物疵点识别中的应用 被引量:10

Application of BP neural network on the identification of fabric defects
在线阅读 下载PDF
导出
摘要 采用3层BP神经网络对织物疵点进行识别,提出织物疵点识别网络不适宜规则,将其应用于隐含层神经元个数选择和训练方法筛选,以优化网络结构,提高训练速度和网络识别精度,设计出较优的织物疵点识别网络。将丝织物中常见的断经、断纬、重纬、档疵、破洞和油污6类疵点作为识别样本,对按照网络不适宜规则设计的网络进行测试。从识别结果来看,BP神经网络可以满足织物疵点识别需要,且具有正确识别率高,识别速度快的优点。 A 3-layer BP neural network is used to identify fabric defects.An unsuitability rule is proposed innovatively to optimize the neural network structure,improve the training speed and identification correctness,which is executed during the selection of neuron number in hidden layer and the choice of training methods.The designed neural network is trained with test samples,including warp-lacking,weft-lacking,double weft,loom bar,oil stain and hole,according to the unsuitability rule.Experimental results show that the neural network designed with the way proposed in this paper can satisfy the identification requirement and which possesses advantages of high identification veracity and speed.
出处 《纺织学报》 EI CAS CSCD 北大核心 2008年第9期43-46,55,共5页 Journal of Textile Research
关键词 BP神经网络 不适宜规则 织物疵点 疵点识别 BP neural network the unsuitability rule fabric defect defect identification
  • 相关文献

参考文献11

  • 1Liu Jianli, Zuo Baoqi. Identification of fabric defects based on discrete wavelet transform and back-propagation neural network[J]. Journal of the Textile Institute, 2007,98(4): 355 - 362.
  • 2陈俊杰,谢春萍.基于神经网络的织物疵点识别技术[J].纺织学报,2006,27(4):36-38. 被引量:14
  • 3Hirose Y. BP algorithm which varies the number of hidden units[J] . Neural Network, 1991,4(1) : 61 - 66.
  • 4伍春香,刘琳,王葆元.三层BP网隐层节点数确定方法的研究[J].武汉测绘科技大学学报,1999,24(2):177-179. 被引量:58
  • 5张清良,李先明.一种确定神经网络隐层节点数的新方法[J].吉首大学学报(自然科学版),2002,23(1):89-91. 被引量:37
  • 6周红晓,蔡俊,任德官.一种优化多层前馈神经网络中隐节点数的算法[J].浙江师范大学学报(自然科学版),2002,25(3):268-271. 被引量:23
  • 7Hagan M T, Menhaj M B. Training feed forward networks with the Marquardt algorithm [ J ]. IEEE Trans on Neural Networks, 1994,5(6) : 989 - 993.
  • 8Fletcher R. Practical Methods of Optimization [ M ]. New York: Wiley, 1991:19 - 24.
  • 9Battiti R. First- and second-order methods for learning:between steepest descent and newton' s method [ J ]. Neural Computation, 1992(4) : 141 - 166.
  • 10Mackay D J. Information-based objective function for active data selection[J] . Neural Computation, 1992,4(3) : 415 - 447.

二级参考文献24

共引文献124

同被引文献96

引证文献10

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部