期刊文献+

基于模糊Fisher准则的半模糊聚类算法 被引量:11

Fuzzy Fisher Criterion Based Semi-Fuzzy Clustering Algorithm
在线阅读 下载PDF
导出
摘要 该文针对线性可分数据提出一种鲁棒的基于模糊Fisher准则的半模糊聚类算法FFC-SFCA。FFC-SFCA通过模糊化散布矩阵,将模糊理论引入Fisher判别方法,通过对模糊Fisher准则函数迭代优化实现聚类。FFC-SFCA的优势在于具有很好的鲁棒性且可以获得可分性好的聚类结果,同时,可以求得最优鉴别矢量和分类阈值。实验证实了FFC-SFCA的有效性以及对两个常规聚类算法的优越性。 The robust Fuzzy Fisher Criterion based Semi-Fuzzy Clustering Algorithm (FFC-SFCA) for linearly separable data is presented in this paper. FFC-SFCA incorporates Fisher discrimination method with fuzzy theory using fuzzy scatter matrix. By iteratively optimizing the fuzzy Fisher criterion function, the final clustering results are obtained. FFC-SFCA exhibits its robustness and capability to obtain well separable clustering results. In addition, optimal discriminant vector and threshold of classifier can also be figured out. The experimental results for artificial and real datasets demonstrate its validity and distinctive superiority over the two conventional clustering algorithms.
出处 《电子与信息学报》 EI CSCD 北大核心 2008年第9期2162-2165,共4页 Journal of Electronics & Information Technology
基金 2004年教育部优秀人才支持计划(NCET-04-0496) 模式识别国家重点实验室开放课题 南京大学软件新技术国家重点实验室开放课题 教育部重点科学研究项目(105087) 国防应用基础研究基金项目(A1420061266)资助课题
关键词 FISHER准则 半模糊聚类 最优鉴别矢量 Fisher criterion Semi-fuzzy clustering Optimal discriminant vector
  • 相关文献

参考文献5

  • 1Clausi D A. K-means iterative Fisher(KIF) unsupervised clustering algorithm applied to image texture segmentation. Pattern Recognition, 2002, 35(9): 1959-1972.
  • 2Wu Kuo-Lung, Yu Jian, and Yang Miin-Shen. A novel fuzzy clustering algorithm based on a fuzzy scatter matrix with optimality tests. Pattern Recognition Letters, 2005, 26(4): 639-652.
  • 3Rand W. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 1971, 66(336): 846-850.
  • 4Blake C L and Merz C J. UCI repository of machine learning databases, Irvine. CA: University of California, Department of Information and Computer Science, http://www.ics.uci. edu/-mlearn/MLRepository.html, 1998, 7.
  • 5修宇,王士同,吴锡生,胡德文.方向相似性聚类方法DSCM[J].计算机研究与发展,2006,43(8):1425-1431. 被引量:21

二级参考文献17

  • 1郭伟,王士同,程科,韩斌.视觉采样聚类方法VSC[J].电子与信息学报,2006,28(4):597-602. 被引量:2
  • 2Kantardzic Mehmed. Data Mining: Concepts, Models,Methods, and Algorithms [M]. New York: Wiley-IEEE Press, 2002
  • 3Richard O Duda, Peter E Hart, David G Stork. Pattern Classification [M]. 2nd edition. New York: John Willey and Sons Ltd, 2000
  • 4A Strehl, J Ghosh, R Mooney. Impact of similarity measures on web-page clustering [C]. In: Proc of the 7th National Conf on Artificial Intelligence: Workshop of AI for Web Search. Menlo Park, CA: AAAI Press, 2000. 58-64
  • 5K V Mardia, P Jupp. Directional Statistics [ M]. 2nd edition.New York: John Willey and Sons Ltd, 2000
  • 6I S Dhillon, E M Mareotte, U Roshan. Diametrical clustering for identifying anti-correlated gene clusters [J]. Bioinformatics,2003, 19(13): 1612-1619
  • 7A Banerjee, I S Dhillon, J Ghosh, et al. Generative model based clustering of directional data [C]. Conference on Knowledge Discovery in Data, Washington, DC, 2003
  • 8I S Dhillon, D S Modha. Concept decompositions for large sparse text data using clustering [J]. Machine Learning, 2001,42(1) : 143-175
  • 9Frank Hoppner, Frank Klawonn. A contribution to convergence theory of fuzzy e-means and derivatives [J]. IEEE Trans on Fuzzy Systems, 2003, 11(5) : 682-694
  • 10I S Dhilon, S Suvrit. Modeling data using directional distribution [ OL]. http ://www. cs. utexas. edu/users/suvrit/work/, 2003

共引文献20

同被引文献110

引证文献11

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部