摘要
该文针对线性可分数据提出一种鲁棒的基于模糊Fisher准则的半模糊聚类算法FFC-SFCA。FFC-SFCA通过模糊化散布矩阵,将模糊理论引入Fisher判别方法,通过对模糊Fisher准则函数迭代优化实现聚类。FFC-SFCA的优势在于具有很好的鲁棒性且可以获得可分性好的聚类结果,同时,可以求得最优鉴别矢量和分类阈值。实验证实了FFC-SFCA的有效性以及对两个常规聚类算法的优越性。
The robust Fuzzy Fisher Criterion based Semi-Fuzzy Clustering Algorithm (FFC-SFCA) for linearly separable data is presented in this paper. FFC-SFCA incorporates Fisher discrimination method with fuzzy theory using fuzzy scatter matrix. By iteratively optimizing the fuzzy Fisher criterion function, the final clustering results are obtained. FFC-SFCA exhibits its robustness and capability to obtain well separable clustering results. In addition, optimal discriminant vector and threshold of classifier can also be figured out. The experimental results for artificial and real datasets demonstrate its validity and distinctive superiority over the two conventional clustering algorithms.
出处
《电子与信息学报》
EI
CSCD
北大核心
2008年第9期2162-2165,共4页
Journal of Electronics & Information Technology
基金
2004年教育部优秀人才支持计划(NCET-04-0496)
模式识别国家重点实验室开放课题
南京大学软件新技术国家重点实验室开放课题
教育部重点科学研究项目(105087)
国防应用基础研究基金项目(A1420061266)资助课题