期刊文献+

一种有效的基于小波帧变换包的纹理分类方法 被引量:6

BASED ON WAVELET′S TRANSFORM PACKET:AN EFFICIENT METHOD FOR TEXTURE CLASSIFICATION
在线阅读 下载PDF
导出
摘要 纹理为多类图象分析提供了重要的特征。本文提出一种新的多分辨率纹理分类方法,该方法采用称为小波帧的冗余小波分解,从而获得具有稳定性和平移不变性的特征描述。同时,为适应纹理的准周期特性,我们采用树型变换包分解策略,即根据某种分解准则,同时对低频信道及高频信道进行分解。另外,我们在算法中还采用自适应的分解方法,一旦给定条件满足,分解终止,整个分类过程结束,从而避免了不必要的分解与计算,提高了计算效率。实验表明,本文提出的方法无论在分类性能和计算效率上都优于现有的分类方法。 A new multi resolution texture classification method is presented in this paper. The method adopts redundant wavelet, which is called wavelet frame, to decompose and then to achieve the characteristic description of stability and translational constancy. Meanwhile, in order to fit the quasi periodic characteristics of texture, the tree transform packet′s decomposition strategy is applied to split low and high frequency signals. Adaptive decomposition is implemented to avoid unnecessary decomposition and computation. Simulation results show that the proposed method has better performance in classification and in computation efficiency than the current classification methods.
作者 赵键 张文军
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 1997年第6期520-526,共7页 Journal of Computer-Aided Design & Computer Graphics
关键词 纹理分类 小波帧 小波包 图象分析 texture segmentation, wavelet frame, wavelet packet.
  • 相关文献

参考文献2

  • 1Chan Y T,Wavelet Basics,1995年
  • 2Chen P C,IEEE Trans Pattern Anal Mach Intell,1983年,5卷,1期,64页

同被引文献65

  • 1韩炜,吴炜.基于颜色和轮廓点分布特征的高速图像检索[J].上海师范大学学报(自然科学版),1999,28(3):49-55. 被引量:3
  • 2林慧琼.小波变换在生物医学信号处理中的应用[J].国外医学(生物医学工程分册),1996,19(6):353-362. 被引量:7
  • 3崔镜泰.小波分析导论[M].西安:西安交大出版社,1995.2-28.
  • 4Swain M J, Ballard D H. Color indexing[J], International Journal of Computer Vision, 1991,7( 1 ) : 11 - 32.
  • 5Tamura H, Moil S, Yamawaki T. Texture features corresponding to visual perception [J]. IEEE Transactions on Systems, Man and Cybernetics, 1978, 8(6): 460-473.
  • 6Beck J, Sitter A and Ivry R. Spatial frequency channels and perceptual grouping in textures segregation[J]. Computer Vision,Graphics, Image Processing, 1987, 37 : 299 - 325.
  • 7Turner M R, Texture discrimination by Gabor functions[J]. Biol Cybern, 1986, 55:71 -82.
  • 8Bovik A C. Analysis of muhi-channel narrow band filters for image texture segmentation[ J ]. IEEE Tram Signal Processing, 1991,39:205 - 2043.
  • 9Bovik A C, Gopal N. Localized measurement of emergent image frequencies by Gabor wavelets[J]. IEEE Tram Inform Theory,1992, 38: 691-712.
  • 10Smith J R, Chang S F. Transform features for texture classification and discrimination in large image database[J]. ICIP-94,1994, 3: 407-411.

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部