期刊文献+

CHEN系统的同步及其在保密通讯中的应用 被引量:1

Synchronization of CHEN system and its application in secure communication
在线阅读 下载PDF
导出
摘要 基于稳定性理论,用非线性反馈的方法构造一个同步系统.用Lyapunov方法从理论上证明误差系统的零点稳定性,用Fortran程序进行了数值仿真,给出系统同步误差图,结果表明驱动系统和响应系统能够很好地达到同步.对系统的第一个变量x(t)进行扰动,数值仿真表明在扰动下系统仍能很好地同步,说明同步系统具有抗干扰性.然后把系统应用到保密通讯中,信息信号m(t)和混沌变量x(t)相加成为混沌传输信号s(t),在接收端信息信号被有效复原,数值仿真结果表明通信方案是可行有效的. The nonlinear feedback synchronization approach for the chaotic CHEN system is presented based on the stability theory. The validity of this synchronous method is proved theoretically with Lyapunov second method. A simulation is conducted with Fortran to prove synchronous validity and anti-interference ability of the method. Finally the method is applied to secret communication. The simulation results indicate that the communication scheme is feasible and effective.
作者 刘勇 李明喜
机构地区 江苏大学理学院
出处 《湖北大学学报(自然科学版)》 CAS 北大核心 2008年第3期226-229,共4页 Journal of Hubei University:Natural Science
基金 国家自然科学基金(10602020)资助项目
关键词 CHEN系统 同步 保密通讯 数值仿真 信息信号 CHEN system synchronization secret communication value simulation information signal
  • 相关文献

参考文献12

  • 1Carrol T L, Pecora L M. Synchronization in chaotic systems[J]. Physics Review Letters, 1990,64(8):821-824.
  • 2LI Shi-hua, TIAN Yu-ping. Finite time synchronization of chaotic systems[J]. Chaos, Solitons and Fractals, 2003, 15(2) : 303-310.
  • 3LU Jin-hu, ZHOU Tian-shou. Chaos synchronization between linearly coupled chaotic systems[J]. Chaos, Solitons and Fractals, 2002, 14(4) :529-541.
  • 4Ricardo Femat. Synchronization of chaotic systems with different order[J]. Physical Review E, 2002,65.-0362261-7.
  • 5Wang X F. Complex networks: topology, dynamics and synchronization[J]. Bifur Chaos, 2002,12 (5) : 885-916.
  • 6Yang X S, Duan C K, Liao X X. A note on mathematical aspects of drive response type synchroniation[J]. Chaos, Solitons and Fractals, 1999,10(9) :1 457-1 462.
  • 7Li Zhigang, Xu Daolin. A secure communication scheme using projective chaos synchronization[J]. Chaos, Solitons and Fractals, 2004,22 (2) : 477-481.
  • 8Lian K Y, Liu P. Adaptive synchronization design for chaotic systems via a scalar driving signal [J]. IEEE Transaction on Circuits and Systems-Ⅰ,2002,49(1):17-27.
  • 9Yang T, Li X F, Shao H H. Chaotic synchronization using backstepping method with application to the chua's circuit and Lorenz systems[C]. Proceeding of American control conference, J UNE, 2001: 25-27.
  • 10Sun J T, Zhang Y P, Wu Q D. Impulsive control for the stabilization and Lorenz systems[J]. Physics Letters A, 2002, 298(2-3) : 153-160.

二级参考文献4

  • 1T L Carrol, L M Pecora. Synchronization in chaotic systems [ J ]. Physics Review Letters, 1990,64 ( 8 ) : 821 - 824.
  • 2K Y Lian,P Liu.Adaptive synchronization design for chaotic systems via a scalar driving signal[J]. IEEE Transaction on circuits and systems - 1,2002,49( 1 ) : 17 - 27.
  • 3T Yang, X F Li, H H Shao. Chaotic synchronization using backstepping method with application to the chua' s circuit and lorenz systems[ C ]. Proceedings of American Control Conference, June, 2001 : 25 - 27.
  • 4G Chen, T Ueta. Another chaotic attractor [ J ]. International Journal Bifurcation Chaos, 1999,9 ( 7 ) : 1465 - 1468,

共引文献4

同被引文献5

  • 1Chen Chenghsien,Sheu Longjye,Chen Hsienkeng,et al.A new hyper-chaotic system and its synchronization[J].Nonlinear Analysis:Real World Application,2009(10):2088-2096.
  • 2Feng Jianwen,Chen Shihua,Wang Changping.Adaptive synchronization of uncertain hyperchaotic systems based in parameter identification[J].Chaos,Solitons and Fractals,2005(26):1163-1169.
  • 3Hassan Salarieh,Aria Alasty.Adaptive synchronization of two chaotic systems with stochastic unknown parameters[J].Communications in Nonlinear Science and Numerical Simulation,2009(14):508-519.
  • 4Wang Zuolei.Anti-synchronization in two non-identical hyperchaotic systems with known or unknown parameters[J].Commun Nonlinear Sci Numer Simulat,2009(14):2366-2372.
  • 5Wang Hua,Han Zhengzhi,Xie Qiyue,et al.Finite time chaos synchronization of unified chaotic system with uncertain parameters[J].Commun Nonlinear Sci Numer Simulat,2009(14):2396-2247.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部