期刊文献+

Pascal算子矩阵在组合恒等式中的应用(英文)

The Applications of the Pascal Operator Matrices to Combinatorial Identities
在线阅读 下载PDF
导出
摘要 定义了四种Pascal算子矩阵,给出了它们的代数性质及它们之间的关系,并且利用二项式型多项式序列、算子及哑运算得到许多组合恒等式. Four kinds of the Pascal operator matrices are defined. The relationship between the matrices is given. Some algebraic properties of the matrices are investigated, Many combinatorial identities are obtained by using polynomials of binomial type, operator and the umbral calculus also.
出处 《大学数学》 北大核心 2008年第4期21-27,共7页 College Mathematics
关键词 PASCAL矩阵 组合恒等式 算子 Pascal matrix combinatorial identity operator
  • 相关文献

参考文献7

  • 1Zhao X, Wang T. The algebraic properties of the Pascal functional matrices associated with the exponential families [J]. Linear Algebra and its Apllications, 2000,318, 45-52.
  • 2Bayat M, Teimoori H. The linear algebra of the generalized Pascal functional matrix[J]. Linear Algebra and its Applications, 1999, 295 : 81-89.
  • 3Bayat M, Teimoori H. Pascal k-eliminated functional matrix and its property[J]. Linear Algebra and its Applications, 2000, 308 : 65- 75.
  • 4Brawer R, Pirovino M. The linear algebra of the Pascal matrix[J]. Linear Algebra and its Applications, 1992,174: 13-23.
  • 5Roman S M, Rota GC. The umbralcalculus[J]. Advances in Mathematics, 1978, 27: 95-188.
  • 6Hsu L C, Mullen G L, Shiue P J. Dickson-Stirling numbers[J]. Proceedings of the Edinburgh Nathematical Society, 1997, 40:409-423.
  • 7Riordan J. Combinatoral identities[M]. New York: Wiley, 1968.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部