摘要
研究了Sobolev方程的各向异性矩形非协调有限元方法.在半离散和全离散格式下,得到了与传统协调有限元方法相同的最优误差估计和超逼近性质.进一步地利用插值后处理技术得到了整体超收敛结果.最后的数值结果表明了理论分析的正确性.
The anisotropic rectangular nonconforming finite element method to Sobolev equations is under semi-discrete and full discrete schemes, the corresponding optimal convergence error estimates and superclose property are derived, which are the same as the traditional conforming finite elements. Furthermore, the global superconvergence is obtained through post-processing technique. Finally, the numerical results illustrate the validity of our theoretical analysis.
出处
《应用数学和力学》
CSCD
北大核心
2008年第9期1089-1100,共12页
Applied Mathematics and Mechanics
基金
国家自然科学基金资助项目(10671184)