期刊文献+

基于异质多传感器融合的网络安全态势感知模型 被引量:12

Network Security Situation Awareness Model Based on Heterogeneous Multi-sensor Fusion
在线阅读 下载PDF
导出
摘要 网络安全态势感知NSSA(Network Security Situation Awareness)是目前网络安全领域的热点研究内容,开展NSSA的研究,对提高我国的网络安全水平有着重要的意义。本文提出了一个NSSA模型,利用多层前馈神经网络,对采集的多个异质的传感器数据进行了融合。为提高融合的实时性,本文还设计了简单易行的特征约简方法,大大降低了融合引擎的输入维数。最后,本文利用安全态势生成算法,对网络安全事件进行了加权量化。实验表明,本文所提出的模型和方法是可行的和有效的。 Network Security Situation Awareness (NSSA) is a hot research spot in the area of network security and it is significant to study NSSA in order to improve the security level of our nation. This paper presents a NSSA model based on data fusion. The NSSA model employs multi-layer feedforward neural network as its fusion engine and fuses the data provided by the sensors in an intelligent and efficient manner. Furthermore, this paper discusses a network security situation generation agorithm which expresses the security situation by the weighted quantization of security events. In addition,it also designs a feature reduction method in order to improve the real-time nature of the NSSA. Our model and approach are proved to be feasible and effective through a series experiments using real network traffic.
出处 《计算机科学》 CSCD 北大核心 2008年第8期69-73,共5页 Computer Science
基金 国家“八六三”高技术研究发展计划项目基金(2007AA01Z401) 国防十一五预研重点项目(513150602) 高等学校博士学科点专项科研基金项目(20050217007)
关键词 网络安全态势感知 多层前馈神经网络 多传感器融合 特征约简 安全态势生成 Network security situational awareness, Multi-layer feedforward neural network, Multi-sensor data fusion, Feature reduction,Security situation generation
  • 相关文献

参考文献17

  • 1Bass T. Multi-sensor Data Fusion for Next Generation Distributed Intrusion Detection Systems // Proceeding of IRIS National Symposium on Sensor and Data Fusion. 1999.
  • 2Mica R E. Design and Evaluation for Sltuation Awareness Enhancement//Proceeding of Human Factors Society 32nd Annual Meeting. Santa Monica, 1988.
  • 3Steinburg A N,Bowman C L,White F E. Revisions to the JDL Data Fusion ModelffJoint NATO/IRIS Conference Quebec, 1998.
  • 4John J S, Michael L H, Douglas M B. A Situation Awareness ModelApplied to Multiple Domains // Proceedings of SPIE. 2005, 5813:65-74.
  • 5Stephen L. The Spinning Cube of Potential Doom. Communications of ACM, 2004,47 (6) : 25-26.
  • 6Yureik W. Visualizing NetFlows for Security at Line Speed:The SIFT Tool Suit//19th Usenix Large Installation System Administration Conference. San Diego, 2005.
  • 7Carnegie Mellon's SEI. System for Internet Level Knowledge (SILK). http://silktools, source forge, net, 2005.
  • 8王慧强,赖积保,朱亮,梁颖.网络态势感知系统研究综述[J].计算机科学,2006,33(10):5-10. 被引量:130
  • 9陈秀真,郑庆华,管晓宏,林晨光.层次化网络安全威胁态势量化评估方法[J].软件学报,2006,17(4):885-897. 被引量:348
  • 10张慧敏,钱亦萍,郑庆华,董世杰,管晓宏.集成化网络安全监控平台的研究与实现[J].通信学报,2003,24(7):155-163. 被引量:13

二级参考文献78

  • 1冯登国,张阳,张玉清.信息安全风险评估综述[J].通信学报,2004,25(7):10-18. 被引量:312
  • 2刘超,谢宝陵,祝伟玲,徐国明,刘万立.基于数据融合模型的网络安全分析评估系统[J].计算机工程,2005,31(13):140-141. 被引量:7
  • 3苏羽,赵海,苏威积,徐野.基于贝叶斯网络的态势评估诊断模型[J].东北大学学报(自然科学版),2005,26(8):739-742. 被引量:10
  • 4HANJW KambrM 范明 孟小峰译.数据挖掘-概念与技术[M].北京:机械工业出版社,2001..
  • 5[1]E B Baum. On the capabilities of multilayer perceptrons. Journal of Complexity, 1988, 4(3): 193~215
  • 6[2]S Akaho, S Amari. On the capacity of three-layer networks. The Int'l Joint Conf on Neural Networks, San Diego, CA, 1990
  • 7[3]E B Baum, D Haussler. What size net gives valid generalization Neural Computation, 1989, 1(1): 151~160
  • 8[4]H Akaike. A new look at the statistical model identification. IEEE Trans on Automatic Control, 1974, AC-19(6): 716~723
  • 9[5]T Kurita. A method to determine the number of hidden units of three-layered neural networks by information criteria. Transactions of the Institute of Electronics Information and Communication Engineers(D-II), 1990, 73(11): 1872~1878
  • 10[6]J E Moody. The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems. In: J E Moody, S J Hanson, R P Lippmann eds. Advances in Neural Information Processing Systems 4. San Francisco: Morgan Kaufmann, 1992. 847~854

共引文献470

同被引文献151

引证文献12

二级引证文献194

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部