期刊文献+

支持向量机核函数选择的研究 被引量:55

Research for Selection of Kernel Functions Used in Support Vector Machine
在线阅读 下载PDF
导出
摘要 支持向量机是近年来发展的以统计学习理论为基础的新型学习机。该学习机用结构风险代替经验风险,因而具有传统的神经网络无法相比的优势。在该学习机的各各研究方向中,核函数的选择无疑是极其重要的核心问题。通过对核矩阵的计算和研究,从理论上为核函数的选择提供了参考。 Support Vector Machines were developed in recent years,which base on statistical learning theory.They replace the experiential risk by structural risk,thus have a large advantage over the traditional neural network.In all research fields of the learning machines,the selection of kernel function is the most important problem.A reference for selecting the kernel function for SVM theoretically is given,through observing and computing the kernel matrix.
出处 《科学技术与工程》 2008年第16期4513-4517,共5页 Science Technology and Engineering
关键词 支持向量机 核函数 模型选择 结构风险 核矩阵 support vector machine kernel function model selection structural risk kernel matrix
  • 相关文献

参考文献6

  • 1[2]Taylor S,Cristianini N.Kernel methods for pattern analysis.England:Cambridge University Press,2004
  • 2[3]Wu S,Amari S.Conformal transformation of kernel functions:a data-dependent way to improve support vector machine classifiers.Neural Processing Letters(S1370-4621),2002;15:59-67
  • 3[4]Chapelle O,Vapnik V N,Bacsquest O,et al.Choosing multiple parameters for support vector machines.Machine Learning,2002;46:131-159
  • 4[5]Cristianini,N 2-Taylor Shawe J,Kandola J,et al.On kernel target alignment.In:Proc.Neural Information Processing Systems Cambridge,MA:MIT Press,2002:367-373
  • 5刘向东,骆斌,陈兆乾.支持向量机最优模型选择的研究[J].计算机研究与发展,2005,42(4):576-581. 被引量:50
  • 6张芬,陶亮,孙艳.基于混合核函数的SVM及其应用[J].计算机技术与发展,2006,16(2):176-178. 被引量:24

二级参考文献13

  • 1丁蕾,陶亮.支持向量机在胆固醇测定中的应用[J].安徽大学学报(自然科学版),2005,29(2):60-63. 被引量:6
  • 2Smits G F, Jordaan E M. Improved SVM Regression using Mixtures of Kernels[A]. Proceedings of the 2002 International Joint Conference on Neural Networks [C]. Hawaii: IEEE,2002. 2785-2790.
  • 3Zhang Li, Zhou Weida, Jiao Licheng. Wavelet Support Vector Machine[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 2004,34(1): 34-39.
  • 4Zhang Sheng, Liu Jian,Tian Jin-wen. An SVM-based Small Target Segmentationand Clustering Approach [A]. Proceedings of the Third International Conference on Machine Learning and Cybernetics[C]. Shanghai: IEEE,2004. 3318-3323.
  • 5V.N. Vapnik. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.
  • 6V. Cherkassky, F. Mulier. Learning from Data: Concept,Theory and Method. NY: John Viley & Sons, 1997.
  • 7O. Chapelle, V. M. Vapnik. Model selection for support vector machines. In: Proc. the 12th Conf. Neural Information Processing Systems. Cambridge, MA: MIT Press, 1999.
  • 8O. Chapelle, V. N. Vapnik, O. Bousquet, et al. Choosing multiple parameters for support vector machines. Machine Learning, 2002, 46(1): 131~159.
  • 9N. Cristianini, J. Shawe-Taylor, J. Kandola, et al. On kernel target alignment. In: Proc. Neural Information Processing Systems. Cambridge, MA: MIT Press, 2002. 367~373.
  • 10K. Tsuda, G. Ratsch, S. Mika, et al. Learning to predict the leave-one-out error of kernel based classifiers. In: Proc. 2001Int'l Conf. Artificial Neural Networks-ICANN 2001. Berlin:Springer-Verlag, 2001.

共引文献69

同被引文献623

引证文献55

二级引证文献510

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部