期刊文献+

基于卡尔曼滤波思想的时变增益最优观测器设计 被引量:2

Time-varying Gain Observers Based on the Kalman Filtering
在线阅读 下载PDF
导出
摘要 与传统常数增益向量(矩阵)状态观测器设计方法相比,基于卡尔曼滤波思想给出了时变增益向量(向量)状态观测器(估计器)的设计方法,例子证实了提出的时变增益观测器具有更小的状态估计误差。 Comparing with the traditional state with the time-varying gain vector/matrix is derived that the proposed optimal observer can give smaller observer with constant gain vector/matrix, an optimal observer based on the Kalman filtering principle. The example indicates state estimation errors than the traditional state observer.
出处 《科学技术与工程》 2008年第15期4346-4348,共3页 Science Technology and Engineering
基金 国家自然科学基金资助资助(60574051) 江苏省自然科学基金项目资助(BK2007017) 江南大学创新团队发展计划资助
关键词 观测器 卡尔曼滤波 state observer Kalman filtering
  • 相关文献

参考文献1

  • 1[2]Astrom K J.Introduction to stochastic control theory.New York:Academic Press,1970.

同被引文献42

  • 1丁锋,陈通文,萧德云.非均匀周期采样多率系统的一种辨识方法[J].电子学报,2004,32(9):1414-1420. 被引量:33
  • 2丁锋,陈通文,萧德云.一般双率随机系统状态空间模型及其辨识[J].自动化学报,2004,30(5):652-663. 被引量:34
  • 3丁锋,萧德云.多变量系统状态空间模型的递阶辨识[J].控制与决策,2005,20(8):848-853. 被引量:23
  • 4Ding F, Chen T. Hierarchical identification of lifted state-space models for general dual-rate systems [ J ]. IEEETransactions on Circuits and Systems. I : Regular Papers,2005,52(6) :1179-1187.
  • 5Ding F, Chen T. Hierarchical gradient-based identificationof multivariable discrete-time systems [ J ]. Automatica,2005,41(2) ;315-325.
  • 6Ding F, Chen T. Hierarchical least squares identificationmethods for multivariable systems [ J ] . IEEE Transactionson Automatic Control, 2005,50(3) : 397-402.
  • 7Ding F,Liu X G,Chu J.Gradient based and least squaresbased iterative algorithms for Hammerstein systems usingthe hierarchical identification principle [ J ]. IET ControlTheory and Applications, 2013,7(2) : 176-184.
  • 8Ding F. Hierarchical multi-innovation stochastic gradientalgorithm for Hammerstein nonlinear system modeling[J ]. Applied Mathematical Modelling, 2013,37 (4):1694-1704.
  • 9Ding F,Qiu L, Chen T. Reconstruction of continuous-timesystems from their non-uniformly sampled discrete-timesystems[ J].Automatica,2009,45( 2) :324-332.
  • 10Ding F. State filtering and parameter identification forstate space systems with scarce measurements[ J].SignalProcessing,2014,104 : 369-380.

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部